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ABSTRACT

In this paper, we consider the problem of non-orthogonal joint
diagonalization of a set of hermitian matrices. This appears in
many blind signal processing problems as source separation
and independent component analysis. We propose a new Ja-
cobi like algorithm based on a LU decomposition. The main
point consists of the analytical derivation of the elementary
two by two matrix. In order to determine the diagonalizing
matrix parameters, we propose a useful approximation. Nu-
merical simulations illustrate the overall good performances
of the proposed algorithm in comparison to two other Jacobi
like algorithms existing in the literature.

Index Terms— Blind source separation, Independent
component analysis, Jacobi algorithm, Joint diagonalization

1. INTRODUCTION

Joint diagonalization of sets of matrices is an important is-
sue in blind signal processing and more particularly in source
separation [1]-[16]. The purpose of joint diagonalization is
to estimate an unknown matrix which jointly diagonalizes a
set of matrices. For this, different approaches have been pro-
posed in the literature. Some of them are directly based on
the estimation of the diagonalizing matrix [1, 2, 3] and some
others use a decomposition allowing to implement a Jacobi
like iterative scheme. We mention that Jacobi like methods
are really simple to implement and often allows a computa-
tional parallelism. This is particularly the case when one can
derive an analytical solution in the basic 2× 2 matrix case. In
this paper we focus on such approach.

We notice that the unitary case has been first considered
yielding the two popular algorithms JADE [4] and SOBI [5]
in the hermitian case. The JADE algorithm was generalized in
[6]. The other interesting case, the complex symmetric one,
was considered in [7]. Nowadays the non-unitary case has
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become important mainly because it allows to skip a first pro-
cessing step (whitening of the observations in source separa-
tion) which limits the performances in practical cases. Re-
cently non-unitary Jacobi like algorithms have been proposed
for the real case in [8, 9], for the complex symmetric case
in [10] and for the hermitian case in [11] and [12]. In this
last paper, Pham develops an algorithm in the same spirit that
the one proposed here but only in the framework of the pos-
itive definite hermitian matrices. As will be shown hereafter,
the hermitian case is specific and is not directly related to the
complex symmetric one.

In this paper, we thus develop a new Jacobi like algorithm
for the non-orthogonal joint diagonalization of hermitian ma-
trices. The main point of the paper is the derivation of an an-
alytical solution in the basic 2× 2 case leading to a very sim-
ple implementation. By computer simulations, we illustrate
the good behavior of the proposed algorithm and we compare
it to the ones suggested in [11] and in [9]. The latter one is
generalized to the hermitian case for the simulation purposes.

2. PROBLEM FORMULATION

We consider K (K ≥ 2) hermitian matrices, Mk, k =
1, . . . ,K, defined as:

Mk = ADkA
H , (1)

where (·)H is the conjugate transpose operator. Throughout
the paper, we consider the case of square matrices, all of them
of size N × N . The matrices Dk are diagonal and real, the
matrix A is complex invertible. Here A is the so-called mix-
ing matrix.

From the set {Mk}, the objective is to estimate the diag-
onalizing matrix B (ideally equal to the inverse of the mixing
matrix A up to the product of a diagonal matrix and a permu-
tation matrix) such that the matrices BMkB

H are (approx-
imately) jointly diagonal. The cost function used to jointly
diagonalize the Mk matrices is the inverse criterion which is
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defined as:

J(B) =

K∑
k=1

||Zdiag{BMkB
H}||2F , (2)

where Zdiag{X} is the matrix defined as the matrix X with
zeros on its main diagonal and where || · ||F is the Frobenius
norm. In order to jointly diagonalize the set {Mk}, we have
to estimate an invertible matrix B minimizing J(B). For this
purpose, we propose a Jacobi like algorithm based on the LU
decomposition.

3. PROPOSED ALGORITHMS

All square matrices can be decomposed as DPLU, where D
is a diagonal matrix, P is a permutation matrix and L and
U are, respectively lower and upper triangular matrices with
diagonal coefficients equal to 1. In the joint diagonalization
problem, matrices D and P correspond to classical indetermi-
nacies and can thus be dropped. Then it remains to determine
the diagonalizing matrix as B = LU. A great advantage of
this parameterization is that B will be invertible.

In order to estimate the matrix B, we consider a Jacobi
like procedure. This procedure consists of decomposing a
problem of size N × N as N(N−1)

2 sub-problems of “size”
2 × 2 considering all couples with the same indexes of rows
and columns. For example, in caseN = 3, this can be written
as:

B =

N−1∏
i=1

N∏
j=i+1

Bij

=

B1
11 B1

12 0
B1

21 B1
22 0

0 0 1

B2
11 0 B2

13

0 1 0
B2

31 0 B2
33

1 0 0
0 B3

22 B3
23

0 B3
32 B3

33

 ,

(3)

where, for a given N , the uppervalue of the Bij components,
noted x, is a bijective function of i and j defined as

x = (i− 1)N + j − i(i+ 1)

2
(4)

with (i, j) ∈ {1, . . . , N}2 and i < j. So x varies between 1

and N(N−1)
2 .

Notice that the elementary matrices Bij only depend on (at
most) four parameters which each corresponds to a 2×2 sub-
matrix. The derivation of each of these 2 × 2 submatrices is
detailed in the next section. When all useful indexes (i, j)
have been considered, this corresponds to a sweep. Notice
that the matrix set is updated as

Mk ←− BijMkB
ij H , (5)

after each elementary matrix is derived. The sweep is iterated
until convergence. Now we focus on the 2 × 2 matrix case
and we derive an analytical solution.

3.1. The analytical resolution of the 2× 2 case

The 2× 2 diagonalizing matrix B is defined as the following
L and U matrix product

B =

(
1 0
` 1

)(
1 u
0 1

)
=

(
1 u
` 1 + `u

)
, (6)

where ` and u are the sought complex parameters.
Let M′k, k = 1, . . . ,K, the matrices of size 2× 2 defined as

M′k =

(
M ′k,11 M ′k,12
M ′k,21 M ′k,22

)
= BMkB

H . (7)

The update (5) keeps the Mk hermitian property, so M′k ma-
trices are hermitian too. Thus M ′k,11 and M ′k,22 are real and
M ′k,21 =M ′∗k,12, where (·)∗ is the conjugate operator. Hence,
the cost function in (2), in the 2 × 2 case, named J2(B) can
be rewritten as:

J2(B) = 2

K∑
k=1

|M ′∗k,12|2. (8)

In using (7) and (6), we have M ′∗k,12 = cTk p with

p =


`

1 + `u
`u∗

u∗(1 + `u)

 and ck =


Mk,11

M∗k,12
Mk,12

Mk,22

 . (9)

Now the cost function (8) can be written as the quadratic
form:

J2(B) = 2 pH
K∑

k=1

c∗kc
T
k p = 2pHCp. (10)

Our goal consists of the analytical derivation of the two un-
known parameters ` and u in the least squares sense. For that,
since J2(B) has to be minimized, we have to solve a minor
eigenvalue problem. To be well defined, the minor eigenvec-
tor, say e, has to be unique (only up to the product by a con-
stant coefficient), i.e. the corresponding subspace has to be of
dimension 1. Thus the minor eigenvalue has to be of multi-
plicity 1. Even if it is the case, it is easily shown that the sys-
tem of equations e = αp for the derivation of ` and u does
not have a solution. An additional problem is that the ma-
trix C can have zero eigenvalue with multiplicity up to two.
We now propose an approximation of M ′∗k,12 in (8) allowing
to overcome the two above problems. From (7), we directly
have

M ′∗k,12 =Mk,11` + Mk,12`u
∗ + M∗k,12(1 + `u)

+ Mk,22u
∗(1 + `u). (11)

For the approximation, we assume that we are close to a di-
agonalizing solution. In this case, we have |Mk,12| � 1,
|`| � 1 and |u| � 1. Thus the term Mk,12`u

∗ in (11) can

6238



be clearly neglected in comparison to the three other terms,
leading to

M ′∗k,12 ≈ cT1,k p1, (12)

where

p1 =

 `
1 + `u

u∗(1 + `u)

 and c1,k =

Mk,11

M∗k,12
Mk,22

 . (13)

Finally the criterion (10) is also approximated as

J2(B) ≈ 2pH
1

K∑
k=1

c∗1,kc
T
1,k p1 = 2pH

1 C1 p1. (14)

The minimization of J2(B) is solved by finding the unit-norm
minor eigenvector of C1, denoted by e′. If the minor eigen-
value is of multiplicity 1, we are going to show that the pa-
rameters ` and u can be determined analytically. We have to
solve the following non-linear system of three equations

e′ =
(
e′1 e′2 e′3

)T
= β p1, (15)

with the three unknowns `, u and the additional complex pa-
rameter β. After straightforward calculations, we obtain the
following analytical solution

u =

(
e′3
e′2

)∗
β = e′2 − u e′1
` =

e′1
β
.

(16)

It has to be noticed that the above solution happens to be very
simple and that the determination of the minor eigenvector
can also be done analytically since a 3× 3 matrix is involved.

3.2. Balancing phase

In order to improve the robustness of the algorithm, we have
to pay attention that the norm of B does not increase too much
within the iterations. This is mainly due to the fact that in
(16) the values of ` and u result from a division. That is why
we propose to normalize B in using a left-multiplication by a
diagonal weighted matrix defined as:

W =

(
w 0
0 w−1

)
, (17)

where w is a real parameter. This parameter is determined
by minimizing the norm of WB. Straightforward derivations
yield to

w =
(|`|2 + |1 + `u|2)1/4

(1 + |u|2)1/4
. (18)

The resulting overall algorithm is denoted HCLU.

4. SIMULATION RESULTS

4.1. Algorithm performances

In order to evaluate the algorithm performances, we use the
performance index proposed in [6][13][14]. It compares the
global matrix S = BA = (Sij) to the product of a permuta-
tion matrix and a diagonal matrix as follow:

I(S) =
1

2N(N − 1)

(
N∑
i=1

(
N∑
j=1

|Sij |2

max` |Si`|2
− 1

)

+
N∑
j=1

(
N∑
i=1

|Sij |2

max` |S`j |2
− 1

))
.

(19)
This non-negative index is zero if S satisfies B = DPA−1.
We consider 25 hermitian matrices of size 15 × 15 with an
additive noise as Mk + t Nk where Nk (k = 1, . . . , 25) are
hermitian matrices of size 15 × 15 and t is an real scaling
factor.

The real diagonal matrices Dk follows a zero mean unit
variance normal distribution. The mixing matrix A and the
matrices of noise Nk are also drawn following a zero mean
unit variance normal distribution for both their real part and
their imaginary part. Finally, we display the mean value of
the performance index I(S) (cf fig.1 - fig.4) w.r.t. the number
of sweeps over one hundred independent draws.

In figure (1), we exhibit the performances of HCLU algo-
rithm with an initial matrix close to a diagonalizing solution.
Hence, we initialize B as the matrix which jointly diagonal-
izes two matrices of the set {Mk}. One can see that in this
context, HCLU quickly converges as expected with a good
performance. This first simulation confirms the validity of
the approximation.

Fig. 1. Algorithms performances for 25 matrices of size
15 × 15 with a good initialization of B and with t = 10−2.

Now far from a diagonalizing solution, the initial matrix
being the identity one, the results are shown in figure (2).
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This shows that the HCLU algorithm is really robust when
the approximation does not hold and good performances are
obtained.

Fig. 2. Algorithms performances for 25 matrices of size
15 × 15 with B initialized as the identity matrix and with
t = 10−2.

4.2. Algorithm comparisons

Now we propose to compare the proposed HCLU algorithm
to two Jacobi like algorithms developed in the non-orthogonal
case. The first one is the JTJD algorithm suggested in [11]
and the second one is the LUJ1D algorithm suggested in [9]
in the real case and generalized here to the complex case. In
the same simulation context as described in section 4.1, the
considered initial matrix being the identity matrix, we com-
pare these three algorithms by first taking t = 10−2 (see fig.3)
and then by taking t = 10−1 (see fig.4).

Fig. 3. Performances of the HCLU algorithm compared to the
JTJD and LUJ1D algorithms when t = 10−2.

The figure 3 shows us that HCLU algorithm outperforms

LUJ1D concerning the convergence speed and after con-
vergence LUJ1D is around 4dB less accurate than HCLU.
Even if the convergence speed of JTJD is better on the very
first sweeps, HCLU converges to −42dB in only 9 sweeps
whereas JTJD join the same performance level but in 14
sweeps.

Fig. 4. Performances of the HCLU algorithm compared to the
JTJD and LUJ1D algorithms when t = 10−1.

In the figure 4, with a higher level of noise, the results
are similar. One can notice that after convergence, the HCLU
algorithm presents a better performance level (−27.5dB) than
LUJ1D (−26.9dB) and JTJD (−25.2dB).

5. CONCLUSION

For the non-orthogonal joint diagonalization of hermitian ma-
trices, we have proposed a new Jacobi like algorithm based on
a LU decomposition of the diagonalizing matrix. In order to
determine analytically the parameters, we have suggested an
approximation of the criterion in the 2×2 case. The computer
simulations illustrate the overall good behavior of the HCLU
algorithm and show that it compares favorably to the JTJD
and LUJ1D algorithms.
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