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ABSTRACT

We have implemented interference alignment (IA) and joint trans-

mission coordinated multipoint (CoMP) on a wireless testbed us-

ing the feedback compression scheme of the new 802.11ac standard.

The performance as a function of the frequency domain granularity

is assessed. Realistic throughput gains are obtained by probing each

spatial modulation stream with ten different coding and modulation

schemes. The gain of IA and CoMP over TDMA MIMO is found

to be 26% and 71%, respectively under stationary conditions. In our

dense indoor office deployment, the frequency domain granularity of

the feedback can be reduced down to every 8th subcarrier (2.5MHz),

without sacrificing performance.

Index Terms— interference alignment, coordinated multipoint,

testbed, 802.11ac.

1. INTRODUCTION

Interference alignment (IA) is a theoretically promising scheme for

dramatically increasing the spectrum efficiency of wireless systems,

[1]. Prior work on experimentation with IA includes [2, 3, 4, 5, 6, 7]

and [8]. The papers [2, 3, 4, 6] consider a scenario with three simul-

taneous MIMO 2 × 2 inks, while [8] consider 4 × 4 ([7] considers

a 1 × 1 case utilizing a techique called blind IA which is not be

considered in this paper). In the 2 × 2 case, IA should ideally pro-

vide three spatial streams while TDMAMIMO can only deliver two,

which in principle should give a throughput gain of around 50% at

high SNR. The paper [2] presents results from simulation on normal-

ized versions of measured channels, and finds the degrees of freedom

of IA and TDMA MIMO to agree with the theoretical predictions.

The paper [3] presented the first over-the-air evaluation of IA with

actual data transmission. The paper presents EVM measurements

but bases channel capacity results on mutual information calculated

from channel measurements. The paper finds that IA outperforms

TDMA (17bits/s/Hz versus 11bits/s/Hz at the 40% level of the sum-

rate CDF, see Figure 11 of [3]), but then no MIMO is applied in the

TDMA case. The measurements were performed in a lecture room.

The paper [8] investigates the degradation of IA due to channel esti-

mation errors in the same testbed as [3], and finds them to be substan-

tial. In the paper [6] we used an OFDM modulation which is close

to the 802.11a/n/ac standards, and presented results from an indoor
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environment in both in LoS and NLoS locations (between rooms).

The measurement scenario is clearly interference limited and shows

fair agreement between theory and measurements, if dirty RF effects

are catered for. The paper [8] considers an urban mixed outdoor-

to-indoor and indoor-to-indoor scenario. The mobile-station is lo-

cated indoors on the fifth floor of an urban building, two of the base-

stations on roof-tops some 150 meters from the mobile, and the third

base-station in the room adjacent to the mobile (there is only a single

mobile-station, the other two are simulated). In the paper the perfor-

mance of IA is analyzed by measuring the singular values of the

interference at the receiver. Impressive 39dB interference suppres-

sion is achieved. However, only a single subcarrier is used - which

should eliminate most nonlinear effects.

Prior CoMP experiments are found in [9, 10, 11] and [6]. The

paper [9] presents experimental results from a real-time LTE im-

plementation with two base-stations (BSs) and two mobile-stations

(MSs), all using two antennas. The paper reports 4 to 22 times

improvement compared to uncoordinated transmissions in the two

cells. The paper [10] presents similar real-time implementations and

reports 2.6 times gain over uncoordinated cells (see Table II of [10]).

The paper [11], reports 31% and 55.3% gains over uncoordinated

cells. In the paper [6] we argued that by modeling the error vector

magnitudes (EVM) of the transmitter radios, fair agreement can be

obtained between measured and real-world SINR ratios for CoMP.

Feedback compression in MIMO interference alignment has

been studied in [12, 13, 14, 15] and many other papers.

In this paper, we extend the implementation of [6], with the use

of the practical feedback compression defined in the IEEE802.11ac

standard for single BS multi-user MIMO (MUMIMO), [16], and use

it in the context of both IA and CoMP. The performance is assessed

as a function of the frequency domain granularity of the feedback.

We also introduce adaptive modulation and coding and thereby pro-

duce highly realistic performance results.

The paper is organized as follows. In Section 2 we give an

overview of the implementation. The IEEE802.11ac single-cell MU-

MIMO feedback scheme is reviewed in Section 4 where we also

show how to apply it for IA and CoMP. In the section following,

the air interface and the signal processing functions are described in

more detail. The results are presented in Section 6. The paper is

concluded in Section 7.

2. IMPLEMENTATION

In the considered scenario, there are three base- and mobile-stations

each having two vertically polarized antennas. Under IA all three

BSs simultaneously transmits a modulated stream to its associated
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Fig. 1. Map over the measurement area

MS bymeans of linear precoding at the transmitter, andMMSE com-

bining at the receiver.

As a baseline we use TDMA MIMO where each BS transmits

two streams, but only one BS is active at a time. We also include two

additional baselines. We call them full-reuse MIMO and full re-use

SIMO. Full-reuse MIMO is identical to TDMAMIMO except all six

streams are active all the time. If the interference between the BSs is

small, this technique will be favorable. In full-reuse SIMO only one

stream is transmitted from each BS, just as in IA. When only one of

the two of interfering BSs is interfering (for instance the other one

is blocked by a brick-wall), this technique will perform similar to IA

since the receiver can reject the single remaining interferer.

In addition we include a technique which is superior to interfer-

ence alignment, but more complex, namely joint transmission coor-

dinated multipoint (CoMP). In this technique all the six transmitter

antennas act as one BS with six distributed antennas. This technique

requires all user data to be shared among the three BSs and phase

coherence among the BS, which is not required in IA. Both IA and

CoMP require precise time alignment and coordinated scheduling of

transmissions between the BSs. The precise time alignment enables

IA and CoMP to treat each subcarrier as an independent narrow-band

system

In CoMPwe use three streams (one per BS) just as in IA. Adding

more streams could further increase the capacity of CoMP. This

is a topic for future investigation. All the software is available at

sourceforge.net under a GNU open source software license.

The code can be found under the project names fourmulti and

iacomp. The base-band processing of all BSs are done in one PC

and the corresponding MSs processing in another. The individual

nodes run as separate threads in the PCs. For a description of the

hardware we refer the reader to [6].

The system has been calibrated so that the noise standard devi-

ation is roughly the same in all receiver chains, σ2

nominal. The value

σ2

nominal is known by all nodes and is used in the receiver MMSE

algorithm, in the feedback quantization, and the beamforming max-

SINR algorithm.

The three BSs are placed near the ceiling in the positions indi-

cated as B0, B1 and B2, in the map in Figure 1. The areas where the

corresponding MS is located during the measurements are marked

with red, green and blue color, respectively. The LoS measurements

were made in the corridor while the NLoS measurements were made

in the adjacent rooms.

D1 D2
MCS 0−4, 2880 symbols

or  MCS 5−9, 1200 symbols

D0

Fig. 2. Training block

3. AIR INTERFACE AND SIGNAL PROCESSING

OVERVIEW

The air interface uses OFDM modulation with the same subcarrier

spacing as 802.11a/n/ac namely 312.5kHz. Due to implementation

constraints, we use only 38 subcarriers instead of the (at least) 58

used by 802.11n/ac. A cyclic prefix of 0.4µs is employed, which

correspond to the short cyclic prefix of 802.11n/ac.

A coding and modulation gearbox with ten combinations of

QAM modulations QPSK, 16QAM, 64QAM and 256QAM and

LDPC codes with 1/2, 5/8 and 3/4 rate has been implemented. The

performance of the gearbox is 2-5dB from the Shannon limit on

AWGN channels in the 2 to 22dB SNR range.

When running the system, two frames are transmitted. The first

frame contains six OFDM training symbols from the six transmit-

ter antennas in the system. These pilots model the null data packet

(NDP) of IEEE802.11ac, see [16]. The MSs estimates the channels

based on these six OFDM symbols for all six transmitter antennas

and all 38 subcarriers. These estimates are then compressed as de-

scribed in Section 4. The result is then sent over wired Ethernet

to the transmitter PC. In the BS PC, the channel state information

is collected in the master thread, which calculates the beamforming

weights according the max-SINR algorithm as described in Section

5. A second frame is then formatted and transmitted from all three

BSs simultaneously 40ms after the training frame was transmitted

(the measurements are done under stationary conditions). This frame

is 3.2ms long and is divided into six identical subframes (for mea-

surement purposes). Each subframe is divided into two so-called

training blocks. A training block is formatted as indicated in Figure

2 above. The three symbols, D0, D1 and D2, are known pilot sym-

bols pre-coded with the beamformer of stream 0,1 and 2, respec-

tively. These symbols correspond to demodulation reference sym-

bols in LTE nomenclature and correspond to the VHT-LTF field in

802.11ac. The MMSE receiver uses these three symbols to calculate

the combiner weights i.e. a structured covariance matrix estimate

is used. No frequency domain averaging of the channel estimates

are done. Following these three training symbols are coding blocks

which use MCS0 (MCS stands for coding and modulation scheme)

to MSC4 in the first training block and MCS5 to MCS9 in the sec-

ond. The reason for splitting the subframes into two training blocks,

is the channel and sample-clock drifts that need to be compensated

by the receiver. Tracking loops could maybe eliminate the need for

the split. Before sending the combined samples to the detector, the

effective noise variance is calculated by measuring the distance from

the samples to the nearest constellation points. This noise variance

estimate is used by the log-likelihood ratio (LLR) extractor. This re-

estimation of the noise variance is done in order to account for the

influence of distortions and residual interference.

4. FEEDBACK ACCORDING TO IEEE802.11AC

The feedback described in standard IEEE802.11ac seems to origi-

nate with [17] where it is called “simple feedback method for slowly

time-varying channels”. In this scheme a singular value decomposi-

tion of the MIMO channel (for a certain subcarrier) is first performed
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as H = USV
H . In single-user MIMO and single-cell multi-user

MIMO, theUmatrix, is of little use for the transmitter and therefore

only the diagonal matrix S and the unitary matrixV need to be feed-

back to the transmitter. When IA and CoMP are considered, several

channel matrices are involved for each user. In this context the U

matrix will be different for different links, and will be important to

determine the interference subspaces at the receivers. To solve this

problem, each MS will instead base its feed-back on the “big” H

matrix, where the submatrices of the BSs have been concatenated.

For instance the ”big” H matrix of user k is given by

Hk = [Hk,1,Hk,2,Hk,3], (1)

where Hk,n is the channel matrix between user k and BS n. The

MS makes an SVD of this matrix as

Hk = UkSkV
H
k . (2)

Since all signals received by the kth user will pass through Hk, it is

clear that Uk can be neglected. Thus, once the base-stations receive

Uk and Sk, they re-create the channel matrix as

H̆k = SkV
H
k , (3)

from which the sub-matrices corresponding to different BSs can be

extracted and applied in the max-SINR algorithm, see Section 5.

The 802.11ac feedback compression starts by phase rotating the

columns of V so that the last row becomes real and positive. These

phases do not need to be sent to the BS since demodulation reference

signals are used to compensate for phase rotations of signal streams

anyway. In the next step, the V matrix is multiplied by a diagonal

matrix as

Ṽ← diag(exp(jφ1,1), . . . , exp(jφm−1,1), 1)V (4)

where the angles φ are chosen to remove the phases of the first col-

umn of V. These angles φ are uniformly quantized with bφ bits.

Following this step, is a step where real-valued Givens rotations are

applied to successively zero out the element (2,1) to (m,1) of Ṽ

using angles ψ2,1, . . . , ψm,1. These ψ lie between 0 and π/2 and

are quantized uniformly with bψ bits. The process continues in a

similar familiar fashion for the remaining columns of V. For the

details we refer the reader to the Matlab/Octave functions available

at http://people.kth.se/˜perz/packV/, and to [17] and

[16]. The total number of bits needed to feedback the V matrix is

given by ((2m− 1)n− n2)(bφ + bψ)/2.
In the IA case (with three BSs and MSs) we can actually reduce

the number of bits by 2bφ by reducing the number of φ angles. This

is done by dividing theV matrix in three parts as

V
T = [VT

0 ,V
T
1 ,V

T
2 ]. (5)

Since the signals transmitted from BS0, BS1 and BS2 only propa-

gates throughV0,V1 andV2, respectively, the beamforming effect

is not changed if these blocks are rotated by a complex phasor. Thus

we modifyV0 andV1 so that their upper-left element becomes pos-

itive and real-valued. This will make the corresponding φ values

zero by definition and don’t need to be feed back to the transmitter.

In the implementations presented in the paper, this reduction of the

number of feedback bits for IA has been implemented.

Since OFDM is used, there is one H matrix per subcarrier. In

the 802.11ac standard there is a parameter Ng which determines the

frequency domain granularity of the feedback. If Ng = 1 then the

feedback of V is done on every subcarrier, if Ng = 2 the feedback

is done on roughly every other subcarrier and so on. The settings

Ng = 1, 2, 4 are defined in the standard. We have augmented this

with 8, 16, 38 since this seems to be an effective way of reducing the

number of feedback bits. The number of bits for the angles bφ and

bψ (see above), can have the values bψ = 5 and bφ = 7 or bψ = 7
and bφ = 9 according to the standard. Herein, only the latter values

has been used.

The signal to noise ratio (SNR) is reported with half the granu-

larity of the V matrix i.e., the SNR is only reported for half of the

subcarriers on which the V matrix is reported. The SNR is reported

as corresponding to the diagonal elements of the matrix S (called

streams in 802.11ac). In our case we have divided the elements with

noise standard deviation σnominal mentioned in Section 2. The report-

ing is done in two steps. First the SNR averaged (in dB) over the

whole band (per singular value) is reported. We interpret this as the

average over the subcarriers for which the SNR is reported. This av-

erage is then uniformly quantized with eight bits in the range from

-10dB to 53.75dB. Having obtained the average SNR per stream,

the SNR per reported subcarrier is given as the difference (the delta)

between the subcarrier SNR and its average (in dB). The delta is

reported as an integer between -8dB and +7dB, thus requiring four

bits.

In the BS, we first reconstruct the SNR per reported subcarrier.

We then employ linear interpolation (in dB) to obtain the SNR for

all the subcarriers where V is feed back. With these two entities at

hand, the channel matrices are reconstructed as in (3). The beam-

forming weights are calculated as described in Section 5 based on

these channel matrices. On subcarriers where there is no feedback

available, the beamformer of the nearest reported subcarrier is used.

Thus no interpolation is attempted.

5. BEAMFORMER IMPLEMENTATION

We use the max-SINR algorithm of [18] to iteratively maximize the

SINR with respect to the receiver- and transmitter-filters in both the

IA and CoMP case. Compared to the max-SINR implementation in

[6] two improvements have been made. First, we initialize the trans-

mitter filters in the closed form solution in Appendix II of [1] for IA.

For CoMP we initialize the transmitter filters in the pseudo-inverse

of the eigenbeamformers. Secondly, we have added a regularization

term to the noise as

σ2

k = σ2

nominal + µ
∑

j

‖Hk,j‖
2, (6)

with µ = 0.001 to help robustify the system. Equation is based

on the assumption that hardware impairments add a noise propor-

tional to the total received power.

6. RESULTS

The system was run during night-time with no people moving in the

environment. In total 22 LoS and 21 NLoS positions were selected

for each of the three MSs. There were several wavelengths between

these positions. For all these positions IA and CoMP and all the

reference schemes were run in a sequence with an interval of 0.34

seconds between the schemes. For each run we get six throughput

values by finding the highest MCS with no bit errors, see Section 3.

Six seconds later, all the schemes was run again in the same position

with a different value of Ng , see Section 4. Finally, we also test the

performance without quantization but with frequency domain gran-

ularity. The reference schemes were repeated for each value of Ng ,
to “calibrate” the throughput gains against the possible influence of
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channel fluctuations. The average signal to interference ratio (disre-

garding beamforming) is 3.2dB. The signal to noise ratio (averaged

over antennas and subcarriers) varies between 35 and 60dB in the

measurements - thus the system is truly interference limited.

Figure 3 and 4 shows the results from LoS and NLoS, respec-

tively. We note that the results in LoS and NLoS are similar for

CoMP, and TDMA-MIMO while the results for IA, full-reuse SIMO

and full-reuse MIMO, have improved by 25%, 77% and 76%, when

going from LoS to NLoS respectively. The reason for this differ-

ence can be seen in Figure 5. In Figure 5 each ’x’ represents one

mobile LoS position. Since there are two interfering BSs, we can

define two C/I for each point. The x-axis of each point represents

the lower of the two C/I and the y-axis the higher. Thus by construc-

tion each ’x’ is located above the blue dashed y = x line. The red

’o’ points indicates the corresponding statistic for the NLoS points.

From Figure 5 we see that the C/I is higher in NLoS than in LoS.

Moreover, in LoS it common that one of the interfering BS is much

stronger than the other. This is probably due to the influence of the

walls. The schemes IA, full-reuse SIMO and full-reuse MIMO, ben-

efit from the higher C/I. Full-reuse SIMO further benefit when only

one interfering BS is strong, since it is able to reject one interferer

using its two receive antennas.

From the results we conclude that there is no loss of perfor-

mance due to the quantization. In LoS only the lowest frequency

domain granularity implemented, Ng = 38 results in a loss sig-

nificant loss while Ng = 16 incurs a minor loss. In NLoS a loss

of 8% and 3% occurs at Ng = 8 for IA and CoMP, respectively.

For Ng = 16 the loss increases to 15% for both schemes. . By

averaging all measurements where Ng < 16, we obtain the follow-

ing throughputs averaged over LoS and NLoS (in sum throughput

bits/symbol/subcarrier) IA:11.1 , CoMP:15.1, TDMA-MIMO:8.8,

full-reuse SIMO:6.4 , full-reuse MIMO:2.2.

In Figure 6 we present simulation results obtained for IA using

the exact same C++ code as was running in our real system, but us-

ing propagation models with various levels of RMS delay-spread,

representative for indoor WLAN, [19]. We first notice that the maxi-

mum throughputs are higher than in the real system. This is because

the real system is suffering from distortions, see [6]. The simulated

performance degrades quickly when Ng is increased. It is possible

that some of this effect is masked by the distortions in the real sys-

tem. However, the simulation results show that Ng <= 4 is neces-

sary for typical conventional deployments. However, our measure-

ments shows that Ng values greater than four would be useful for

very dense deployments. Identical simulations for CoMP showed

less sensitivity to Ng .

7. CONCLUSION

We have implemented 802.11ac based feedback compression in a

real system employing three BS and three MS. The throughput has

been assessed by probing the spatial channels with a sequence of

coding and modulation schemes. The gain of IA and CoMP over

TDMA MIMO is 30% and 70% , respectively under stationary con-

ditions. In our dense deployment, the frequency domain granularity

of the feedback can be reduced down to about every 8th subcarrier

(5MHz), without sacrificing performance. The feedback compres-

sion of 802.11ac does not incur any performance loss.

In order to estimate the overhead loss of IA and CoMP un-

der non-stationary conditions, the required update rate need to be

known. This will be a topic for future work.
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