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Abstract—The next step in immersive communication beyond
video from a single camera is object-based free viewpoint video,
which is the capture and compression of a dynamic object such
that it can be reconstructed and viewed from an arbitrary
viewpoint. The moving human body is a particularly useful
subclass of dynamic object for object-based free viewpoint video
relevant to both telepresence and entertainment. In this paper,
we compress moving human body sequences by applying recently
developed Graph Wavelet Filter Banks to time-varying geometry
and color signals living on a mesh representation of the human
body. This model-based approach significantly outperforms state-
of-the-art coding of the human body represented as ordinary
depth plus color video sequences.

I. INTRODUCTION

We are interested in immersive communication using object-
based free viewpoint video. In this context, we show how a
model of a human body can help with compression.

A moving human body can be represented by a sequence of
3D meshes with a fixed and known connectivity (or topology).
Because the connectivity is fixed, such a sequence can be
regarded as a single mesh with time-varying geometry and
color, that is, as a dynamic mesh. And because its connectivity
is known, the connectivity need not be compressed, unlike the
general case [1], [2]). Only the geometry and color of the
dynamic mesh need be compressed in our problem.

Various methods exist for compressing the geometry of
a dynamic mesh [3]–[17]. Among these, one of the most
efficient ways to decorrelate the spatial information of a mesh
is to use Mesh Wavelet Transforms (MWTs), introduced by
Schröder and Sweldens in [18] and subsequently developed
in [10], [19]–[21]. These transforms are constructed by the
lifting scheme [22] with mesh hierarchies generated from vari-
ous types of subdivision such as Butterfly [23] and Loop [24].
Although MWTs are designed to be localized in the vertex
domain, their frequency localization has not been analyzed
as in the designs of classical wavelet transforms [25], [26].
Furthermore MWTs depend not only on the topology but
also the geometry of the mesh. This nonuniform behavior
significantly increases the computation cost as well as hin-
ders the application of the transforms to color data. A new
generation of wavelet transforms [27]–[32] has recently been
developed for signals living on arbitrary graphs of which
meshes are special cases. (For an introduction to the field of
signal processing on graphs, interested readers are referred

to [33].) Biorthogonal Graph Wavelet Filter Banks (GWFBs),
introduced by Narang and Ortega in [32], are among the best
designs with almost all the desired properties of a wavelet
transform such as perfect reconstruction, critical sampling,
compact support, and near orthogonality. In addition, they
depend only on the topology of the graphs but not on the
signals.

In this paper, we apply GWFBs to the compression of both
the geometry and the color of a dynamic mesh representing
a moving human body. For the mesh we use a skinned rig
model, which can be motion compensated by transforming
every frame of the mesh into a rest pose. All the parameters of
the model, including animation parameters (i.e., pose at every
frame) and rest pose parameters (i.e., geometry and color of
the mesh in its rest pose), are estimated from depth and color
image data. Multiple frames of data produce a sequence of rest
pose meshes that can be considered as time-varying signals
living on a graph. GWFBs are then applied to the difference of
signals in consecutive frames and the coefficients are quantized
and entropy coded. One of our main contributions is the use
of a quad subdivision mesh that naturally defines a bipartite
graph multiresolution, obviating the need for the arbitrary
bipartite decomposition in generic GWFBs, one of their main
drawbacks. A quad subdivision mesh also enjoys a vertex
pattern that we exploit in context adaptive entropy coding.

Since the mesh sequence is estimated from color plus
depth video, and alternative would be to compress the video
directly, and from the decoded video estimate the mesh at the
receiver (where it is needed for free viewpoint generation).
Experiments show that our geometry encoder significantly
outperforms such direct video encoding with a state-of-the-
art video encoder (HEVC) on our data sets.

II. PRELIMINARIES

A. Graphs and Meshes

A graph G = (V, E) is characterized by a set of vertices V
and a set of edges E . Without loss of generality, we assume
V = {1, 2, . . . , N} for some integer N . Each element in E has
the form (i, j) for some i, j ∈ V . We consider only undirected
graphs, in which (i, j) ∈ E implies (j, i) ∈ E .

A P -sided polygon mesh M = (V ,F ) is characterized by
a vertex matrix V ∈ RN×3 for which each row vTi is the
position of a vertex, and a face matrix F ∈ NK×P for which
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each row fTk lists the P vertex indices of a face. The topol-
ogy of a mesh induces an undirected graph G with vertices
V = {1, 2, . . . , N} and edges {(fpk, f(p+1)k)}k=1,K,p=1,P ,

with the understanding that f(P+1)k
∆
= f1k. When P = 4

we say the mesh is a quad mesh. The mesh is colored if
V ∈ RN×6 and each row (vTi , c

T
i ) of V contains both the

position and color of vertex i.

B. Skinned Rig Models

Skinned rig models have long been used to model human
characters and other articulated creatures and objects in com-
puter animation [34], [35]. A skinned rig model consists of
a set of bones (sometimes called a rig) and a skin attached
to the bones by weights. The bones undergo separate rigid
transformations to animate the skin. Precisely, the model is
characterized by a collection of parameters (M,B,W,B(t)).
M is a colored mesh representing the skin of the object in
a pre-defined rest pose. B = {Gb}b=1,B is a set of B 4 × 4
homogeneous coordinate transformation matrices, where each
4 × 4 transformation matrix Gb represents the rest pose of
bone b, by transforming the local coordinate system of bone
b in its rest pose into some world coordinate system. W =
{wib}i=1,N,b=1,B is a set of weights, where each weight wib
represents the association of vertex i (in meshM) with bone b.
For each vertex i, the weights are non-negative and sum to one,
i.e.,

∑
b wib = 1. Finally, B(t) = {Gb(t)}b=1,B is another

set of homogeneous coordinate transformation matrices, where
each transformation matrixGb(t) represents the pose of bone b
at time t, by transforming the local coordinate system of bone
b at time t into the world coordinate system. The parameters
(M,B,W) are time-invariant, or static, while the parameters
B(t) are time-varying, or dynamic. The dynamic parameters
are used to animate the model and are known as animation
parameters. Together, the model parameters determine the
position of each vertex of the mesh at time t as

v̄i(t) =

B∑

b=1

wibGb(t)G
−1
b v̄i, (1)

where v̄ = (vT , 1)T denotes the 3D position v in homo-
geneous coordinates. The color ci of each vertex remains
constant.

We estimate all parameters, (M,B,W,B(t)), from a se-
quence of RGBD images {Y (t)} of real human subjects
captured with a Microsoft Kinect color plus depth camera.
Further, our estimation is online in the sense that the param-
eter estimates are updated after every frame t = 1, 2, . . ..
Thus after every frame t = 1, 2, . . . we obtain estimates
(M(t),B(t),W(t)) of the static parameters as well as es-
timates B(t)(t) of the animation parameters. For the pur-
poses of this paper, other details of the estimation tech-
nique are unimportant. It suffices to know that the estimates
(M(t),B(t),W(t),B(t)(t)) must be quantized, entropy coded,
and transmitted, so that the receiver can reproduce the position
and color of each vertex at each time t using the synthesis
model (1). In this paper, we focus on the transmission of mesh

Fig. 1: Example of a sequence of estimated XYZ-RGB signals
on a graph induced by a mesh topology. The meshes are
displayed only in frontal view.

estimates M(t), specifically the position and color estimates
f

(t)
i = (v

(t)
i , c

(t)
i ) for each vertex i at each frame t, as illus-

trated in Fig. 1. While it would be possible to stop updating
the model after the first frame, the resulting animation would
be less faithful to the actual geometry and color over time.

C. Graph Wavelet Filter Banks

A GWFB provides a vertex-frequency localized transform
for graph-indexed signals. Its advantages include critical sam-
pling, perfect reconstruction, and compact support in the vertex
domain (hence computational efficiency) [32, Table I]. Like a
classical discrete wavelet transform [26], a GWFB is built on a
two-channel filter bank as shown in Fig. 2. The downsampling
operators ↓ βL and ↓ βH respectively keep only the values at
lowpass and highpass vertices, defined as the two independent
sets of the original bipartite graph on which the signal f
is indexed. The four filters are first designed in the graph
spectral domain1 similarly to the maximally-flat design of
Cohen-Daubechies-Feauveau [38] and then are inverted into
the vertex domain.

The above design is applicable only to bipartite graphs.
If the graph is not bipartite we need to decompose it into
a sequence of bipartite subgraphs and then apply a filter
bank separably to each subgraph. A sequence of κ bipartite
subgraphs can be found by coloring the vertices with up to 2κ

1obtained by diagonalizing the graph Laplacian. See [33], [36], [37] for
further discussions on the frequency notion of graph signals.

8

contributions of the low-pass graph-frequencies which are below some cut-off and attenuates significantly

the graph-frequencies which are above the cut-off. The highpass transform H1 does the opposite of a

low-pass transform, i.e, it attenuates significantly, the graph-frequencies below some cut-off frequency.

The filtering operations in each channel are followed by downsampling operations βH and βL, which

means that the nodes with membership in the set H store the output of highpass channel while the nodes

in the set L store the output of lowpass channel. For critically sampled output we have: |H|+ |L| = N .2

Using (8), it is easy to see from Figure 1 that the output signals in the lowpass and highpass channels,

analysis side synthesis side

L L

H H

L

H

Fig. 1: Block diagram of a two-channel wavelet filterbank on graph.

after reconstruction are given as

f̂L =
1

2
G0(I + JβL)H0f

f̂H =
1

2
G1(I + JβH )H1f , (11)

respectively. The overall output f̂ of the filterbank is the sum of outputs of the two channels, i.e.,

f̂ = f̂L + f̂H = Tf , where T is the overall transfer function of the filterbank given as:

T =
1

2
G0(I + JβL)H0 +

1

2
G1(I + JβH )H1

=
1

2
(G0H0 + G1H1)
︸ ︷︷ ︸

Teq

+
1

2
(G0JβLH0 + G1JβHH1)
︸ ︷︷ ︸

Talias

, (12)

where Teq is the transfer function of the filterbank without the DU operation and Talias is another

transform which arises primarily due to the downsampling in the two channels. For perfect reconstruction

2 Note that in the regular signal domain the two most common patterns of critically sampled output are i) H = L =
{0, 2, 4, ...}, where even set of nodes store the output of both channels and ii) L = {0, 2, 4, ...} and H = {1, 3, 5, ...} , where
each node stores the output of only one of the channel.

December 5, 2011 DRAFT

Fig. 2: Block diagram of a two-channel wavelet filter bank on
a bipartite graph. Reproduced from [32, Fig. 1].
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Fig. 3: Subdivision mesh (blue
dots connected by black links)
generated from a base quad
mesh (red dots connected by
green links) after 2 levels of
subdivion.

Fig. 4: Regular graph.

Fig. 5: Irregular graph with
irregular vertices being cir-
cled.

colors such that no two neighboring vertices have the same
color, and then for k = 1 . . . , κ splitting the vertices into
two independent sets according to the kth bit of the color
index [31].

A multiresolution transform can be obtained by iteratively
applying the two-channel filter bank to the lowpass vertices
— assuming some rule for reconnecting the lowpass vertices
after downsampling. Finding a natural way to reconnect the
lowpass vertices is a challenge for GWFBs on general graphs.

III. PROPOSED MESH ENCODER

In this section we propose a method for coding the sequence
of geometry and color estimates XY Z(t) = [v

(t)
i ] and

Y UV (t) = [c
(t)
i ] that come out of our human body model

estimator. The sequences of estimates of other parameters,
including the animation parameters B(t) = [Gb(t)], are
assumed to be coded separately.

In a traditional video encoder, frame X(t) at time t is
predicted by a motion compensated version X̃(t) of a previous
reference frame, and the residual E(t) = X(t) − X̃(t) is
transformed, quantized, and entropy coded. The quantized
residual Ê(t) is added to X̃(t) to obtain the decoded frame
X̂(t) = Ê(t) + X̃(t). The motion estimation (ME) is per-
formed on X̂(t) (i.e., inside the loop) and the motion vectors
are coded separately.

We propose to use an analogous structure to code the
sequences XY Z(t) and Y UV (t), but without motion esti-
mation and compensation in the loop. Motion estimation and
compensation are provided outside the loop by estimating B(t)
as described in Sec. II-B and using it to normalize XY Z(t) to
the rest pose. All geometry and color components are coded

independently. Of course, the signals XY Z(t) and Y UV (t)
no longer live on a regular grid, as in Fig. 4, but rather on an
irregular graph, as in Fig. 5. Thus the important part of our
proposal is how to adapt the transform and the entropy coder
to the graph structure. These are covered in the following two
subsections.

A. Multiresolution GWFBs
The time-invariant graph of human bodies, on which the

GWFBs are applied, is first created by applying a mesh
subdivision (such as Catmull-Clark subdivision [39]) on a
base quad mesh as shown in Fig. 3. We claim that any quad
subdivision mesh provides a natural sequence of bipartite
graphs for multiresolution GWFBs, as illustrated in Fig. 6 for
L = 2 levels of subdivision. In general, let G2` be the graph
associated with a level-` quad subdivision mesh with vertex
set V̄2`, for ` ≥ 0. The next level of subdivision divides each
quad into a 2 × 2 grid. Therefore, the vertex set V̄2(`+1) is
simply a union of V̄2` with two sets of new vertices V2`+1

and V2`+2, where V2`+1 contains all the face points that do
not connect to any vertices in V̄2`, and V2`+2 contains all
the edge points that connect only to vertices in either V̄2`

or V2`+1. This implies that G2(`+1) is a bipartite graph with
two independent sets V2`+2 and V̄2`+1

∆
= V̄2` ∪ V2`+1. Let

G2`+1 be the graph with vertices V̄2`+1 and edges connecting
every four vertices of a face in V̄2` to the corresponding face
vertex in V2`+1. This construction implies that G2`+1 is a also
a bipartite graph with two independent sets V2`+1 and V̄2`. In
this way we have constructed a multiresolution sequence of
bipartite graphs,

G0 ⊂ G1 ⊂ · · · ⊂ G2L−2 ⊂ G2L−1 ⊂ G2L,

where G`−1 ⊂ G` means V`−1 is an independent subset of G`,
suitable for multiresolution GWFBs.

B. Context Adaptive Entropy Coder
After the geometry and color components are transformed

using a multiresolution GWFB, the coefficients are indepen-
dently quantized using a uniform scalar mid-rise quantizer
with step size ∆. That is, a coefficient x is quantized to index
kx = Q(x) = bx/∆c, while an index k is dequantized to
x̂k = Q−1(k) = ∆ · (k + 1/2). The indices are entropy
coded using a large-alphabet arithmetic coder assuming a
Laplacian distribution on x. As a baseline, the parameter of the
distribution, λi, is constant for all coefficients xi in subband
Vn. However, the parameter can also be adapted based on
the context of xi, as follows. Let Ni be the set of neighbors
of vertex i in V̄n. Let pn denote the pattern of neighbors of
vertices in subband n, meaning each vertex in Vn is connected
to pn,1 vertices in Vn−1, and pn,2 vertices in Vn−2, and so
on. In particular, from Fig. 6 we can define pn as

pn =





4, n = 1

[2, 2]T , n = 2

[2, 1, 1], n = 3

[2, 1], n ≥ 4

(2)
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(a) V̄0 = V0. (b) V̄1 = V̄0 ∪ V1. (c) V̄2 = V̄1 ∪ V2.

(d) V̄3 = V̄2 ∪ V3. (e) V̄4 = V̄3 ∪ V4.

Fig. 6: Construction of multiresolution bipartite graphs.

Let also θn be a meta-parameter vector in R|pn|+1. We linearly
predict the parameter λi from its neighbors in Ni by

λi = aTi θn
∆
= [1, bTi ] · θn, (3)

where, for j = 1, 2, . . . , |pn|,

bi,j =
pn,j∑

k∈Ni∩Vn−j
|xk|

. (4)

The total code length of subband n is now a function of θn

`(θn) = −
∑

i∈Vn

log
(
e−|kxi

|∆aT
i θn − e−(|kxi

|+1)∆aT
i θn

)
.

The parameter vector θ∗n that minimizes `(θn) can be found
by convex programming.

IV. EXPERIMENTAL RESULTS

We evaluate our geometry and color encoder on the 100-
frame mesh sequence depicted in Fig. 1. The distortion-rate
performance of the geometry encoder is shown in Fig. 7. (We
do not show the performance of the color encoder for lack
of space, but the results are similar.) We turn on various
coding tools in sequence, starting with I-frame encoding,
which independently codes each component of each pixel
using an average parameter λ̄ for entropy coding. Turning
on Temporal Prediction (TP) codes the residual using the
past frame as a predictor. Turning on Motion Compensation
(MC) normalizes every frame to the rest pose (outside of the
loop). Turning on the GWFBs transforms the residual before
quantization, using the GraphBior(3,3) filters from [32] on
our multiresolution structure. Turning on Context Adaptive
Entropy Coding (CAEC) uses the per-pixel adaptive parameter
λi for entropy coding. Also in Fig. 7 we plot the rate-distortion
performance of the traditional video coding approach using
state-of-the-art video codec HEVC (version 3.2), by inverting

Fig. 7: Rate-distortion performance of geometry encoder.
SQNR is the ratio of total signal power to total quantization
error, where the totals are taken over x, y, and z components.

(a) Mesh coding approach.

(b) Video coding approach.

Fig. 8: Two different coding schemes. The mesh coding
approach transmits the coded model whereas the video coding
approach transmits the coded depth maps and color images.

the order of model estimation and encoding, as illustrated
in Fig. 8. Having the advantage of a model, our scheme
outperforms HEVC, even with only a single camera. Moreover,
our approach scales well when multiple cameras are used to
estimate the model.

V. CONCLUSION

The recent availability of low-cost high-quality color plus
depth cameras is enabling practical object-based free view-
point video for immersive communication. In this paper we
have shown that a particularly effective way to compress
dynamic 3D objects for this purpose is to model the object
using a dynamic colored mesh based on a quad subdivision
and to couple this with near-orthogonal GWFBs and CAEC,
for both geometry and color. The quad subdivision structure
solves a number of problems that both GWFBs and CAEC
have on arbitrary graphs. We believe this will be the major
paradigm for dynamic mesh compression going forward.
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