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ABSTRACT 

Acoustic source localization and sound recognition are common 
acoustic scene analysis tasks that are usually considered separa-
tely. In this paper, a new source localization technique is propo-
sed that works jointly with an acoustic event detection system. 
Given the identities and the end-points of simultaneous sounds, 
the proposed technique uses the statistical models of those 
sounds to compute a likelihood score for each model and for 
each signal at the output of a set of null-steering beamformers 
per microphone array. Those scores are subsequently combined 
to find the MAP-optimal event source positions in the room. 
Experimental work is reported for a scenario consisting of me-
eting-room acoustic events, either isolated or overlapped with 
speech. From the localization results, which are compared with 
those from the SRP-PHAT technique, it seems that the proposed 
model-based approach can be an alternative to current techni-
ques for event-based localization.  
 

Index Terms— Source localization, acoustic event detec-
tion, sound model, simultaneous sources, beamforming 

1. INTRODUCTION 

In acoustic source localization (ASL), there are some well-
established methods [1]. One of them relies on calculating the 
direct time delay of arrival (TDOA) through cross-correlations, 
and combines it with information regarding the microphone 
position to generate a maximum likelihood (ML) based spatial 
estimator [2]. As the estimation of an accurate TDOA is a diffi-
cult task, the performance of this method degrades drastically 
either at low SNR, or in high reverberant room, or in multiple 
source scenarios. Other methods are based on steered beamfor-
ming (SB) [3], the most popular among them being the steered 
response power (SRP) [1]. Either simple delay-sum beamformers 
or the more robust phase transform (PHAT) filtered weights are 
used in SRP based methods [1], [2]. The SRP-PHAT technique is 
more robust at low SNRs compared to the above mentioned 
techniques, and it has already been established as a kind of stan-
dard in ASL [4]. Additionally, a localization technique, based on 
ML, using a noise model, which is closely related to SRP, has 
been reported in [5]. Generally, the SRP based techniques use 
computationally intensive grid search methods to find a global 
maximum. In [6], [7], the authors discussed the computational 
issues and proposed efficient methods so that the SRP based 
techniques can be implemented in real time. 

To estimate the position coordinates of the acoustic sources, 
most widely-used ASL methods use energy-like measures ex-
tracted from the microphone signals. Conversely, in this paper, 
the use of the information about the content of the signals is 
proposed. In fact, instead of relying only on energy-like 
measures, the probability or similarity measure delivered by a 
classifier is proposed. As the classifier uses models for the differ-
ent sound classes, we can refer to this approach as sound-model-
based (SMB) localization. In a practical situation, the identity 
and the time positioning of the (possibly) simultaneous sounds 
may be provided by an acoustic event detection (AED) system, 
so the sound models are shared by both AED and ASL systems.  

By discretizing the space in the room, a set of beamformers, 
based on a frequency invariant null-steering approach, is used to 
nullify, up to some extent, the signals coming from the discre-
tized positions. Based on a set of statistical models, for each 
multi-channel signal we have a set of likelihood values, each one 
being the likelihood corresponding to a specific position in the 
room and a specific event class. Then, a maximum-a-posteriori 
(MAP) criterion is applied to estimate the optimal position of 
each event source in the room space. The processing scheme of 
this proposed ASL system is similar to the one presented in [8], 
[9] for acoustic event detection. 

In the experimental work, we contextualize the SMB method 
in our smart-room, where small T-shaped microphone arrays are 
distributed on the walls. Experiments are carried out with a con-
crete meeting-room scenario with one or two simultaneous 
sources, and using a database collected in the smart-room. The 
localization results obtained with the proposed SMB method 
using all the six 3-microphone arrays in the room is compared to 
those of a baseline SRP-PHAT based localization system work-
ing in an event-based mode. 

The proposed ASL system is described in Section 2. Experi-
mental work is reported in Section 3, and a conclusion is given in 
Section 4. 

2. SOUND-MODEL-BASED LOCALIZATION 

Herewith, it is assumed that the identities and the end-points of a 
set of acoustic events are known. The acoustic events may occur 
either isolatedly or simultaneously in time. 

The proposed system is shown in Fig. 1. Let us assume a 
room with a set of K microphone arrays which can be located 
arbitrarily; for deployment, this is an advantage with respect to 
using spatially-structured array configurations. The 2-D room 
space is divided into a set of P pre-defined small-area cells. Note 
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Figure 1: Proposed acoustic source localization system 

that the vertical coordinate is not considered in this study, 
though the proposed system could easily include it. For each 
microphone array, there is a set of P null-steering beamformers 
(NSB), each one attenuating the signals from all directions ex-
cept the direction corresponding to the center of one of the cells. 

The output signal of each beamformer enters a classification 
system. After feature extraction (FE), a likelihood score (LC) is 
computed for each of the considered event classes (e.g. hypothe-
sized from an external AED system), by using previously trained 
acoustic event models (that may be the same models used by the 
AED system). Finally, a decision module carries out the locali-
zation of the events by combining the likelihood scores using a 
MAP criterion. The proposed system is hereafter referred to as 
steered-beamforming sound–model-based (SBSMB) localization 
system. The beamformer design and the model based localiza-
tion using MAP are presented in the two following subsections. 

2.1. Frequency invariant null-steering beamforming 

A null-steering beamformer (NSB) is capable of placing nulls at 
different positions in the sensor array patterns [10], [11]. Given 
the broadband characteristics of the audio signals, in order to 
determine the beamformer coefficients we use a technique called 
frequency invariant beamforming (FIB). The method, proposed 
in [12], uses a numerical approach to construct an optimal fre-
quency invariant response for an arbitrary array configuration 
with a very small number of microphones, and it is capable of 
nulling several interfering sources simultaneously. As depicted in 
Fig. 2, the FIB method first decouples the spatial selectivity from 
the frequency selectivity by replacing the set of real sensors by a 
set of virtual ones, which are frequency invariant. Then, the same 
array coefficients can be used for all frequencies. An illustrative 
example is shown in Fig. 3; note how the beams for the angle of 
interest are rather constant along frequency. 

2.2. MAP-based source localization 

Let us assume a room with K microphone arrays, and a set of N 
possibly simultaneous) events Ei, 1≤i≤N, that belong to a set of C 

Figure 2: Frequency invariant beamforming 

 

 
Figure 3: Example of FIB beam pattern. Angle of interest 

is 15 deg.  

different classes. Given a grid of positions sj, 1≤j≤P, in the room, 
for each array, there is a set of P NSBs, so that the j-th NSB is 
placing nulls in the directions of the P positions except that of 
position sj. Therefore, there is a set of P output signals from each 
array processor. For a given event Ei, a set of P likelihood scores 
are obtained from the NSB outputs and using the model of the 
class Ei. The optimal position so

i of that i-th event out of the N 
events is chosen to maximize a product of posterior probabilities 
[13], i.e. 
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3. EXPERIMENTS WITH ISOLATED AND 
OVERLAPPED ACOUSTIC EVENTS 

In the experimental work, a meeting room scenario with a prede-
fined set of 11 acoustic events has been considered [9], [14], 
[15]. Like in [9], [15], it is assumed that there may simultaneous-
ly exist 0, 1 or 2 events, and, in the last case, one of the events is 
always speech. In the reported experiments, we localize the 
isolated events (1 source) and overlapped events (2 sources). To 
determine the likelihoods, the acoustic events are modeled with 
Hidden Markov models (HMM), and the state emission probabil-
ities are computed with continuous density Gaussian mixture 
models (GMM). 

3.1. Meeting room acoustic scenario and database 

Fig. 4 depicts our department’s smart-room, with the position of 
its six T-shaped 4-microphone arrays on the walls. The linear 
arrays of 3 microphones are used in the experiments. For train-
ing, development and testing of the system, we have used, as in 
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[15], part of a publicly available multimodal database recorded 
in the smart-room. Concretely, 8 recording sessions of audio 
data, which contain isolated acoustic events are used. The ap-
proximate source positions of the acoustic events (AE) are 
shown in Fig.4. Each session was recorded with all the six T-
shaped microphone arrays. The overlapped signals used for 
development and testing of the system were generated adding 
those AE signals recorded in the room with a speech signal, also 
recorded in the room, both from all the 24 microphones. To do 
that, for each AE instance, a segment with the same length was 
extracted from the speech signal starting from a random position, 
and added to the AE signal. The mean power of speech was 
made equivalent to the mean power of the overlapping AE. That 
addition of signals produces an increment of the background 
noise level, since it is included twice in the overlapped signals; 
however, going from isolated to overlapped signals the SNR 
reduction is slight: from 18.7dB to 17.5dB. Although in our real 
meeting-room scenario the speaker may be placed at any point in 
the room, in the experimental dataset its position is fixed at a 
point at the left side (SP, in Fig. 4). All signals were recorded at 
44,1 kHz sampling frequency, and further converted to 16 kHz. 

3.2. Event source localization 

In the reported experiments, the steered-beamforming sound 
model based (SBSMB) system depicted in Fig. 1 is used to local-
ize either one or two simultaneous acoustic event sources in the 
room environment. The nulls of the beamformers are placed in 
the (all but one) directions of the centers of the pre-defined cells. 
To facilitate real time processing, a relatively large cell: 
0.6x0.8m has been considered. Though a larger cell reduces the 
resolution of the ASL in the room, it also reduces the number of 
beamformers required, which in turn ensures less computational 
load. In the proposed system, the beamformers are designed to 
work with the horizontal row of 3 microphones available in each 
array of the smart-room. 

In the feature extraction block of the SBSMB system depict-
ed in Fig 1, a set of audio spectro–temporal features is computed 
for each signal frame. Frames are 30 ms long with 20 ms shift, 
and a Hamming window is applied. We have used frequency-
filtered log filter-bank energies (FF-LFBE) for the parametric 
representation of the spectral envelope of the audio signal [16]. 
For each frame, a short-length FIR filter with a transfer function 
z-z-1 is applied to the log filter-bank energy vectors and end-
points are taken into account. Here, 16 FF-LFBEs along with 
their 16 first temporal derivatives are used, where the latter rep-
resents the temporal evolution of the envelope. Therefore, the 
dimension of the feature vector is 32. 

The HTK toolkit is used for developing the HMM-GMM 
based classifier [17]. There is one left-to-right HMM with three 
emitting states for each AE. 32 Gaussian components with diag-
onal covariance matrix are used per state. Initially, each HMM is 
trained, with the standard Baum-Welch algorithm, using the 
signals for a particular array. For each array, the likelihoods are 
computed by using the same set of acoustic event models for all 
the beamformer outputs. 

Given an event class, the optimal source position is obtained 
by maximizing the probability resulting from product-rule com-
bination of posteriors over all microphone-arrays, as indicated by 
Eq. (1). All the positions are assigned flat prior probabilities in 
the reported tests.  

 
Figure 4 : Smart-room layout, with the positions of mi-
crophone arrays (T-i), acoustic events (AE) and speaker 

(SP) 

3.3. Proposed metrics 

To test the performance of the model based localization system, 
two metrics are used. 1) Acoustic source localization cell error 
(Cell error), which is defined as the quotient between the num-
ber of localization errors and the total number of event occur-
rences in the testing database. For an event Ei, a localization 
error occurs when the cell assigned to the true position is not the 
same as the one estimated by the ASL system. The true position 
for each event was obtained from visual inspection during the 
recording of the signal. 2) Root-mean-squared error for localiza-
tion (RMSE): 
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where (xi

test , yi
test ) is the 2-D estimated position of the test event, 

and (xi
ref , yi

ref) is its corresponding reference (true) position. ∆x 
and ∆y are the separations along x and y axis of the pre-defined 
positions which are considered by quantizing the room space. Ne 
is the total number of event samples in the testing session. 

3.4. Results and discussion 

The testing results are obtained with all the 8 sessions (S01-S08) 
with a leave-one-out criterion, i.e. we recursively keep one 
session for testing, while all the other 7 sessions are used for 
training. Table 1 shows the results obtained with two metrics for 
the proposed SBSMB system. As a comparison, in the same 
table the result for a SRP-PHAT localization system has also 
been presented, which consists of exploring the space, searching 
for the maximum of the global contribution of the PHAT-
weighted cross-correlations from all the microphone pairs [1], 
[2]. Instead of a grid-search, which requires functional evalua-
tion on a fine grid throughout the room, a stochastic region 
contraction is used to find the global maximum as presented in 
[6], [18], to facilitate a real-time working environment. The 
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results with the two metrics from Sub-section 3.3, averaging 
over all AEs (excluding speech) in the 8 testing datasets, are 
obtained using all the six arrays (T1 to T6) available in the room.  

The results obtained with the SBSMB system consider flat 
values for both p(sj|Ei) and p(Xk). It is worth noticing that, in the 
proposed method, an event-based approach is followed, which 
means the localization is performed from a whole event instead 
of localizing in a frame-by-frame basis.  

Due to that event based approach, it is assumed that during 
the whole event the acoustic source is not moving along space. 
For that reason, ‘steps’ and ‘chair moving’ events are kept out 
from the evaluation. In addition, instead of using the AED sys-
tem output to set the AE model used by the likelihood calcula-
tors in the classifier, the ground truth has been used, so the errors 
from the AED system are not affecting the measure of localiza-
tion performance in our tests. 

In the experiments with one source (a non-speech acoustic 
event), the proposed system shows a slightly lower cell error rate 
than the conventional SRP-PHAT system. The performance 
scores for the acoustic events in the overlapped case (when an 
acoustic event is overlapped with speech), with both the SBSMB 
system and the SRP-PHAT system, are presented in Table 2. 
Both techniques have been used to localize the AE source when 
there are two sources present in the signals. The SRP-PHAT 
technique has been scored by looking at the two main peaks in 
the resulting acoustic map. The proposed SBSMB system clearly 
outperforms the SRP-PHAT based system. Notice that, for the 
SBSMB system, the cell error rate in the two-source case is only 
around 6% (relatively) higher than that of the one-source case. 

Table 1: Performance comparison of the ASL systems for 
the isolated (one-source) case 

 SBSMB SRP-PHAT 

Cell error (%) 13.4 13.8 

RMSE 0.41 0.44 

 

Table 2: Performance comparison of the ASL systems for 
the overlapped (two-source) case 

 SBSMB SRP-PHAT 
Cell error (%) 14.5 29.1 

RMSE 0.53 1.5 
 

4. CONCLUSION 

A novel approach for acoustic source localization based on 
models of the sounds has been presented which combines a set 
of beamformers and a MAP based decision. When tested in a 
meeting-room scenario, the one-source localization performance 
of the proposed system is slightly better than that of the widely 
used SRP-PHAT based system, while it is significantly better in 
the more complex two-source scenario, provided the exact in-
formation about classes and time end-points is available. Note 
that, unlike the SRP-PHAT system, the SBSMB system requires 
the identities and the time end-points of the events. However, it 
may take advantage of the a-priori probabilities of the pre-

defined positions for each event class, though they were not used 
in the experiments. In summary, the presented SBSMB locali-
zation technique can be an alternative for localization in a multi-
ple source scenario when it works together with an acoustic 
event detection system, with the additional advantage that both 
use the same framework. Future work will be devoted to design 
a combined system that uses a joint approach for localization 
and recognition, which does not need any assumption about 
identities or positions. 

5. ACKNOWLEDGMENTS 

This work has been supported by the Spanish project SARAI 
(TEC2010-21040-C02-01). Thanks are given to Carlos Segura 
for his helpful comments. 

6. REFERENCES 

[1] M. Brandstein and D. Ward, Eds., Microphone Arrays: 
Signal Processing Techniques and Applications, New York: 
Springer, 2001. 

[2] M. Omologo and P. Svaizer, “Use of the cross-power-
spectrum phase in acoustic event location,” IEEE Trans. 
Speech and Audio Processing. 1993, 5, 288–292. 

[3] J. Dmochowski and J. Benesty, “Steered Beamforming 
Approaches for Acoustic Source Localization,” Speech Pro-
cessing in Modern Communication, 1st Eds., I. Cohen, J. 
Benesty, and S. Gannot, Eds.; Springer-Verlag Berlin Hei-
delberg, vol. 3, pp. 307–337, 2010. 

[4] C. Zhang, D. Florencio, and Z. Zhang, “Why does PHAT 
work well in low noise, reverberant environments?” Proc. 
ICASSP, Las Vegas, USA, 2008. 

[5] C. Zhang, D. Florêncio, D. E. Ba, and Z. Zhang, “Maximum 
likelihood sound source localization and beamforming for 
directional microphone arrays in distributed meetings,” 
IEEE Trans. on Multimedia, vol. 10, pp. 538-548, 2008. 

[6] M. F. Berger and H. F. Silverman, “Microphone array opti-
mization by stochastic region contraction,” IEEE Transac-
tion on Acoustics, Speech, and Signal Processing, vol. 39, 
no. 11, pp. 2377-2386, 2002. 

[7] J. Dmochowski, J. Benesty, and S. Affes, “A Generalized 
Steered Response Power Method for Computationally Via-
ble Source Localization,” IEEE Trans. on Audio, Speech 
and Language Processing, vol. 15, pp. 2510–2526, 2007. 

[8] R. Chakraborty, C. Nadeu, and T. Butko, “Detection and 
positioning of overlapped sounds in a room environment”, 
Proc. Interspeech, Portland, USA, 2012. 

[9] R. Chakraborty and C. Nadeu, “Real-time multi-microphone 
recognition of simultaneous sounds in a room environment”, 
Proc. ICASSP, Vancouver, Canada, 2013. 

[10] B. D. Van Veen and K. M. Buckley, “Beamforming: A 
Versatile Approach to Spatial Filtering,” IEEE ASSP Maga-
zine, vol. 5, no. 2, pp. 4-24, April, 1988. 

[11] O. Hoshuyama, and A. Sugiyama, “Robust Adaptive Beam-
forming”, in Microphone Arrays: Signal Processing Tech-
niques and Applications. Ed. M. Brandstein and D. Ward. 
New York: Springer, 2001. 

[12] L.C. Parra, “Steerable Frequency-Invariant Beamforming 
for Arbitrary Arrays”, Journal of the Acoustical Society of 
America, 119 (6), pp. 3839-3847, June, 2006. 

622



 

[13] L. I. Kuncheva, Combining Pattern Classifiers: Methods 
and Algorithms, Wiley-Interscience, 2004. 

[14] A. Temko, C. Nadeu. D. Macho, R. Malkin, C. Zieger, and 
M. Omologo, “Acoustic event detection and classification,” 
in Computers in the Human Interaction Loop, A. Waibel, R. 
Stiefelhagen, Eds., Springer, pp. 61-73, 2009. 

[15] T. Butko, F. Gonzalez Pla, C. Segura, C. Nadeu, and J. 
Hernando, “Two-source acoustic event detection and locali-
zation: online implementation in a smart-room”, Proc. 
EUSIPCO, Barcelona, Spain, 2011. 

[16] C. Nadeu, D. Macho, and J. Hernando, “Frequency & time 
filtering of filter-bank energies for robust HMM speech 
recognition”, Speech Communication, vol. 34, pp. 93-114, 
2001. 

[17] S. Young, et al., The HTK Book (for HTK Version 3.2), 
Cambridge University, 2002. 

[18] H. Do, H. F. Silverman, and Y. Yu, “A real-time SRP-
PHAT source location implementation using stochastic re-
gion contraction (SRC) on a large-aperture microphone ar-
ray,” Proc. ICASSP, Hawaii, USA, 2007. 
 

623


