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ABSTRACT

Geometric representation of objects and surfaces in terms of

3D meshes is becoming increasingly important in a variety of

applications. As the amount of data in this format increases,

the problem of compression becomes vital for the further de-

velopment of the field. In this paper we present a codec for

dynamic 3D mesh data that utilizes the “hybrid” framework

from video coding, built upon temporal prediction and spatial

transform. We discuss various features of the codec, includ-

ing unrestricted quantization and two-stage entropy coding,

and investigate its compression efficiency on a variety of test

material. A discussion of various prediction structures and

their impact on error resilience is also provided.

Index Terms— Dynamic geometry compression, 3D

mesh compression, unrestricted quantization

1. I
TRODUCTIO


3D graphics data are increasingly used in a number of ap-

plications. 3D Computer Aided Design (CAD) is replacing

traditional architectural design [1], and has long been used

in vehicle and aircraft industry. Clinical applications, such

as orthodontic diagnosis using 3D scans [2], are also on the

rise. 3D scientific data visualization, for example in weather

modeling [3], enrich our understanding of the underlying phe-

nomena and enable better analysis. In addition, the use of 3D

data has been popular in the entertainment industry, especially

video gaming and film.

Early work on geometry compression was focused on

static data, while current efforts mainly consider dynamic

data. In [4], a compression technique was constructed using

Principal Component Analysis (PCA) applied over all ver-

tices of all frames in the sequence. In [5], PCA is used along

with second-order linear prediction, while in [6], a clustering-

based PCA compression is proposed. Vertices are segmented

into clusters and PCA is applied to each cluster separately.

In [7], PCA is applied along with EdgeBreaker techniques to

compress 3D mesh data.

In [8], a coding method based on predictive Discrete Co-

sine Transform (DCT) is proposed. The encoder clusters the

vertices with similar motions and applies DCT to the differ-

ence of consecutive frames in each clusters. A coding method
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based on key frames is introduced in [9], where the encoder

selects and encodes certain key frames, while the decoder

reconstructs these key frames and interpolates intermediate

frames. In [10], an octree-based coding method is proposed.

Octree is an efficient structure for encoding 3D data, and is

applied in [10] to 3D motion vectors of mesh vertices. This

method has been extended in [11] through rate-distortion op-

timization to improve coding efficiency.

Frame-based Animated Mesh Compression (FAMC) [12]

is a technique adopted in MPEG-4 part 16 AFX (Animation

Framework eXtension). It consists of spatial clustering of ver-

tices to the point where the motion within each cluster can

be approximated by a single 3D affine motion model. The

first frame is encoded using static mesh coding techniques,

while skinning-based motion prediction is applied to subse-

quent frames. Prediction residuals are encoded with the help

of a temporal transform, e.g. DCT. FAMC framework was

extended in [13] in terms of spatial and temporal scalability.

In this paper, our earlier Motion Capture (MoCap) data

codec [14, 15] is adapted to the case of dynamic 3D mesh

data. The distinguishing features of our approach compared

to those listed above is the avoidance of temporal transforms,

which enables low-delay encoding, and avoidance of spatial

clustering, which simplifies encoding process and does not

require cluster updates. The paper is organized as follows.

The coding process is described in Section 2, with quantiza-

tion discussed in Section 2.3, entropy coding in Section 2.4,

and prediction structures in Section 2.5. Coding performance

on several 3D mesh sequences is presented in Section 3, fol-

lowed by conclusions in Section 4.

2. HYBRID DY
AMIC 3D MESH CODI
G

3D mesh data consists of two parts: (1) 3D geometry, i.e.,

coordinates of the vertices, and (2) mesh connectivity infor-

mation, which specifies which vertices form mesh faces. Con-

nectivity data often does not change throughout the sequence,

at least that was the case with the data used for evaluating the

proposed codec.1 The connectivity data was simply encoded

in a lossless manner in the first frame using a version of adap-

tive arithmetic coding known as range coding [16], and reused

1Evaluation was carried out in accordance with the rules of

the first IEEE SPS Dynamic Geometry Compression Competition:

http://www.geometrycompression.org/
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Fig. 1: Block diagram of a hybrid dynamic mesh encoder.

in all subsequent frames to reconstruct the mesh. It should

be noted that there are several efficient methods for encoding

connectivity data, e.g. [17, 18], which could be used instead

for improved efficiency. However, if connectivity is constant

across frames, differences in coding efficiency of connectiv-

ity data do not play a major role in long sequences. In the

remainder, we focus on lossy compression of 3D geometry.

The structure of the proposed hybrid 3D mesh encoder

is shown in Fig. 1 and follows the structure of MoCap en-

coders from [14, 15]. While MoCap data has a much lower

spatial sampling density compared to 3D mesh data (i.e., a

few tens of motion markers compared to a few thousand mesh

vertices), the techniques used in MoCap coding turn out to be

useful in 3D mesh coding as well. The components of the

encoder are briefly described below.

2.1. Reordering

The input to the encoder is a frame of 3D vertex coordi-

nates. These coordinates are usually grouped according to the

vertex, that is, 3D coordinates of the first vertex, followed by

3D coordinates of the second vertex, and so on. Within the

coding loop, prediction residuals of the vertices will be sub-

ject to the spatial transform, so it would be beneficial if sim-

ilar coordinates were grouped together. That way, the trans-

form would be better able to exploit the correlation among

the coordinates. One simple way to achieve this is to reorder

the coordinates according to the axis, creating a sequence in

which x-coordinates of all vertices appear first, followed by

y-coordinates and z-coordinates. As discussed in [14], such

reordering (matrix in Fig. 1) helps to concentrate the sig-

nal energy at low frequencies. After quantization, this results

in a number of consecutive zeros at high frequencies, which

facilitates efficient entropy coding.

2.2. Spatial transform

Upon reordering, prediction of the current input vector is sub-

tracted from the actual input vector, and the residual is subject

to spatial transform. Our codec applies 1D DCT (block size

equal to the prediction vector length) to the entire prediction

residual vector. Spatial transform exploits spatial redundancy

in the data to concentrate signal energy into relatively few

low-frequency coefficients. It plays a role similar to spatial

clustering in FAMC [12] and several other mesh encoders,

but is much simpler.

2.3. Quantization

Unlike image and video data whose bit depth, and therefore

dynamic range, is known in advance, the dynamic range of

3D mesh data depends on various factors such as the choice

of the origin, and the size and dynamics of the mesh (e.g.,

how much it increases or moves relative to the origin). One

can of course make assumptions about the dynamic range in

advance, but large overload distortion will result when such

assumptions fail. Another option is to analyze the whole mesh

sequence prior to encoding and empirically find the dynamic

range, but this is only suitable for offline encoding. To avoid

such problems, our encoder employs an unrestricted midtread

quantizer [15], which maps an input value into the quanti-

zation index given by

(1)

where is the quantizer step size, is the sign of ,

and denotes rounding-down operation. Dequantized value

is given by Compared to conventional quantizers

that divide a finite input range into a finite number of bins,

thereby creating a possibility for large overload distortion in

the outermost bins, the unrestricted quantizer divides the en-

tire real line into bins of size and therefore eliminates the

possibility of overload distortion. While this allows one to

guarantee for any , the downside is that

there are now an infinite number of quantization indices ,

which prevents conventional entropy coding techniques such

as Huffman or arithmetic coding from being used directly on

the output of the quantizer.

2.4. Entropy coding

Since the number of possible quantizer outputs is infi-

nite, the following strategy is employed to encode them

efficiently [15]. The first bit in the bitstream of any frame

indicates whether all any quantization indices in the that

frame are non-zero. When there is no motion in the se-

quence, or at very low bitrates when the quantizer step size

is large, it sometimes happens that all residuals are quan-

tized to zero, and this strategy provides an effective way of

encoding such frames by a single bit. Otherwise, if there

are non-zero indices in the frame, the following procedure is

utilized to encode them, starting from those corresponding to

low-frequency DCT coefficients.

The quantization index is separated into sign

and magnitude . The magnitude is encoded using adaptive

Golomb-Rice coding [19] followed by adaptive range coding.
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The adaptive Golomb-Rice encoder computes its parameter

as

(2)

where is the vector of de-quantized DCT coefficients in

the reference frame, and then sets its divisor to . The

magnitude is divided as , where is the quo-

tient and is the remainder. The quotient is

represented as ones followed by a zero, while the remainder

is represented as a -bit fixed-length codeword. Note that

does not have to be encoded, because the decoder can com-

pute it using (2). After encoding the last non-zero index in

the frame, the encoder inserts the End-of-Frame (EOF) sym-

bol and avoids encoding the remaining zero indices. At the

decoder, when an EOF symbol is detected, any still-to-be-

decoded indices in that frame are set to zero. In summary, the

Golomb-Rice encoder binarizes the quantization index mag-

nitudes and places the EOF symbol after the last non-zero in-

dex, thereby eliminating the need to code a potentially large

number of trailing zeros at high frequencies.

The adaptive range encoder uses three symbols from the

output of the Golomb-Rice encoder: ones and zeros that rep-

resent binarized index magnitudes, and the EOF symbol. The

role of arithmetic coder is to improve coding efficiency of

Golomb-Rice coding that may result if the empirical distribu-

tion of quantization indices is not geometric (in which case

Golomb-Rice code would be optimal). All symbol frequen-

cies are initialized to uniform at the beginning of each frame

and are updated as the encoding proceeds. This is one of the

differences with respect to the MoCap encoder in [15], where,

due to the relatively small number of samples per frame, sym-

bol frequencies were carried from frame to frame in order to

allow more effective adaptation. In the case of 3D mesh data,

with thousands of vertices per frame, such carry over was

found not to be necessary. Another difference with respect

to [15] is rescaling the symbol counts if they reach ,

to avoid counter overflow. Whenever this occurs, the symbol

counts of zeros and ones are divided by and rounded down,

while the count of EOF symbol is left as is, since there is only

one such symbol per frame. This rescaling was not necessary

in the MoCap codec [15] due to the relatively small number of

samples per frame. The overall structure of the bitstream for

a single frame is shown in Fig. 2. Sign bits follow the magni-

tude bitstream and are left uncoded since their distribution is

close to i.i.d., and therefore not very compressible.

It should be noted that the combination of Golomb cod-

ing and arithmetic coding was also used for 3D mesh com-

pression in [20]. However, the procedure employed in [20]

was to arithmetically encode quantized residuals between

and , and Golomb-code the residuals outside of this range.

Unlike [20], our encoder uses adaptive Golomb-Rice encod-

ing to binarize all quantized residuals, and then arithmetically

encodes this binarized stream.

Fig. 2: Structure of the encoded bitstream.

Fig. 3: Various possible prediction structures.

2.5. Prediction

The encoder architecture in Fig. 1 offers a flexible framework

in which various prediction structures can be employed, sim-

ilar to hybrid video encoders. Some of these are shown in

Fig. 3. The top one is the well known IPP structure from video

coding, in which the first frame (I) is intra-coded without

prediction from any other frame, and subsequent frames are

predictively (P) encoded from reconstructed previous frames.

Various predictors (e.g., zero-order, first-order, etc.) can be

utilized; in our experiments, we used a simple zero-order pre-

dictor. The IPP structure has zero-frame algorithmic delay,

meaning that the mesh data in any frame can be encoded as

soon the frame is captured, and is therefore very suitable for

interactive applications.

The second configuration in Fig. 3 is the IBP structure in

which, in addition to I and P frames, the bi-directionally (B)

predicted frames are utilized. Although only one B frame is

shown between neighboring I/P frames, the number of con-

secutive B frames can be larger, as in video coding. This
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structure offers higher compression efficiency at the cost of

increased algorithmic delay, because B frames cannot be en-

coded until their future reference frame is encoded.

Conventional IPP and IBP structures are vulnerable to po-

tential errors and losses that may occur when the bitstream

is transmitted over a noisy channel. The last structure in

Fig. 3 takes error propagation into account and attempts to

minimize its effects at the cost of some degradation in com-

pression efficiency. This was the prediction structure em-

ployed in our original MoCap codec [14, 15]. It contains

two types of frames - Long-Term Reference (LTR) frames,

which are predicted only from the previous LTR frame, and

Short-Term Reference (STR) frames, which are simply pre-

dicted from the previous frame (either LTR or STR), and act

like P frames in the IPP structure. The LTR/STR structure has

zero-frame algorithmic delay, yet is more error resilient than

the IPP structure, because any errors in the STR frames can-

not propagate beyond the next LTR frame. Error concealment

for this prediction structure was developed in [21]. In video

coding, error resilient prediction structures have been studied

in [22, 23, 24], among others, and some of these techniques

may be applicable to error resilient mesh prediction as well.

3. EXPERIME
TAL RESULTS

Experiments were carried out on five test sequences from [25]:

Dance, Dog, Handstand, Skirt, and Wheel. Three codecs

were tested. One is our earlier Hybrid Motion Capture Codec

(HMOCC) [15], in which only LTR frames are utilized (i.e.,

there are no STR frames, so LTR frames act simply as P

frames). The other two codecs are two versions of the Hybrid

Dynamic Mesh Compression (HDMC) described in this pa-

per, one employing the IPP prediction structure (HDMC-IPP)

and the other employing the IBP structure (HDMC-IBP).

Compression efficiency was measured in terms of Root Mean

Square (RMS) error versus total file size.

Operational rate-distortion curves of the three codecs

are shown in Fig. 4. As expected, HDMC-IBP has the best

performance on all sequences, followed by HDMC-IPP and

HMOCC. A more quantitative comparison is provided in Ta-

ble 1, which shows the Bjontegaard Delta (BD) [26] perfor-

mance of HDMC-IPP and HDMC-IBP relative to HMOCC.

As seen in the table, HDMC-IPP offers up to 11% bit savings

compared to HMOCC, while HHDMC-IBP is able to provide

up to 24% bit savings.

4. DISCUSSIO
 A
D CO
CLUSIO
S

In this paper, our earlier Motion Capture codec [15] was mod-

ified and employed for dynamic 3D mesh compression. The

modified codec with the IBP prediction structure was able to

achieve up to 24% bit savings relative to the original Mo-

Cap codec. Although rate-distortion comparison with con-

ventional 3D mesh codecs was not carried out in this paper,
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Fig. 4: RMS vs. file size on five test sequences.

architectural differences suggest that the proposed codec is

simpler and offers a flexible framework able to accommodate

both low-delay compression as well as error resilience.

Further enhancements to the presented codec are possi-

ble in several ways. Quantization step size, which was kept

constant in the present work for simplicity, may be adapted

based on the content, type of frame, or perceptual importance

of various coefficients of the spatial DCT, in order to achieve

desired bit allocation or rate control. Other spatial transforms

(e.g., a graph transform) could be employed instead of DCT.

Finally, context-adaptive entropy coding and more advanced

predictors, such as the skinning-based motion compensation

from FAMC [12], could be incorporated into the framework.

BD RMS BD file size (%)

Sequence IPP IBP IPP IBP

Dance

Dog

Handstand

Skirt

Wheel

Table 1: BD performance relative to HMOCC.
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