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ABSTRACT

The multi-agent distributed consensus optimization problem arises
in many engineering applications. Recently, the alternating direc-
tion method of multipliers (ADMM) has been applied to distributed
consensus optimization which, referred to as the consensus ADMM
(C-ADMM), can converge much faster than conventional consen-
sus subgradient methods. However, C-ADMM can be computation-
ally expensive when the cost function to optimize has a complicated
structure or when the problem dimension is large. In this paper, we
propose an inexact C-ADMM (IC-ADMM) where each agent only
performs one proximal gradient (PG) update at each iteration. The
PGs are often easy to obtain especially for structured sparse opti-
mization problems. Convergence conditions for IC-ADMM are ana-
lyzed. Numerical results based on a sparse logistic regression prob-
lem show that IC-ADMM, though converges slower than the original
C-ADMM, has a considerably reduced computational complexity.

Index Terms— Distributed consensus optimization, multi-agent
network, ADMM, logistic regression

1. INTRODUCTION

Consider a multi-agent network, e.g., a wireless sensor network with
distributed sensors, a data cloud network with distributed servers or a
computer system with distributed microprocessors. The agents seek
to collaborate with each other to accomplish a task [1]. For exam-
ple, distributed servers in a data cloud network may cooperate for
data mining or for parameter learning in order to fully exploit the
data collected by individual servers. The agents are assumed able to
perform local computation and exchange messages with their neigh-
bors. In general, the task problems can be cast as the following form

(P) min
x∈X

N∑

i=1

(
fi(Aix) + gi(x)

)
(1)

where x ∈ R
K is the decision variable, X ⊆ R

K is a feasible set of
x, and fi(Aix) + gi(x) is a cost function associated with agent i
where Ai ∈ R

M×K . The cost function is composed of one smooth
component fi(Aix) and one non-smooth component gi(x) which
is often used for regularization purpose [2].

It is assumed that each agent i has knowledge about local infor-
mation only, i.e., fi, gi and Ai. Nevertheless, all agents are inter-
ested in obtaining the optimal x of (P). Distributed consensus opti-
mization methods, based on the average consensus technique [3] and
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the subgradient method [4], have been proposed [5, 6]. The consen-
sus subgradient method is appealing due to its simplicity and ability
to handle a wide range of applications. However, the convergence of
the consensus subgradient method is usually slow.

Recently, the alternating direction method of multipliers (ADMM)
[7] has been proposed for distributed consensus optimization, which
we refer to as the consensus ADMM (C-ADMM). In [8], several C-
ADMM alternatives were developed for solving the sparse LASSO
problem [9]. Linear convergence rate of C-ADMM was further an-
alyzed in [10– 12]. One issue that C-ADMM faces in practice is
that, at each iteration, each agent has to solve a subproblem globally,
which, however, may not always be easy. This is particularly true
when the cost functions fi’s have complicated structures or when
the problem dimension is large. While a low-accuracy suboptimal
solution may be adopted for these subproblems, the convergence be-
havior of C-ADMM may be greatly impaired.

In this paper, we propose an inexact consensus ADMM (IC-
ADMM) where agents at each iteration perform one proximal gradi-
ent (PG) update [13] only. The PG step is obtained by linearizing the
smooth functions fi’s in C-ADMM, which is different from the ex-
isting inexact ADMM methods [14,15] which linearize the quadratic
term caused by the augmented Lagrangian function. It is known that
PGs are efficiently computable in many situations, especially when
gi’s are so called sparse promoting functions [2, 13]. We present
conditions under which the proposed IC-ADMM can converge glob-
ally and have a linear convergence rate. Numerical results will show
that the proposed IC-ADMM converges much faster than the con-
sensus subgradient method. While it converges slower than the orig-
inal C-ADMM, the traded complexity reduction is quite significant,
demonstrating the potentials for multi-agent big data applications.

2. NETWORK MODEL AND ASSUMPTIONS

We let a graph G denote the multi-agent network, which associates
with a node set V = {1, . . . , N} and an edge set E . Here, (i, j) ∈ E
if and only if agent i and agent j are neighbors to each other and can
communicate with each other. According to E , an adjacency matrix
W ∈ {0, 1}N×N can be defined, where [W ]i,j = 1 if (i, j) ∈ E
and zero otherwise. In addition, one can define an index subset Ni =
{j ∈ V | (i, j) ∈ E} for the neighbors of each agent i, and a degree
matrix D = diag{|N1|, . . . , |NN |} which is a diagonal matrix. We
assume that

Assumption 1 The network graph G of the multi-agent system is
connected.

Assumption 1 implies that neighborhood-wise consensus is suffi-
cient for global consensus in the network. We also make the standard
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convexity assumption for (P).

Assumption 2 (P) is a convex problem, that is, fi’s and gi’s are
proper closed convex functions and X is a closed convex set. More-
over, strong duality holds for (P) and its dual (e.g., Slater’s condition
holds).

3. DISTRIBUTED CONSENSUS ADMM

In this section, we briefly review the consensus ADMM (C-ADMM)
method in [8] for solving (P). The C-ADMM method is based on
the observation that, under Assumption 1, (P) can be equivalently
written as

min
x1∈X ,...,xN∈X

N∑

i=1

(
fi(Aixi) + gi(xi)

)
(2a)

s.t. xi = tij ∀j ∈ Ni, i ∈ V, (2b)

xj = tij ∀j ∈ Ni, i ∈ V, (2c)

where {tij} are slack variables that ensure the consensus between
agent i and its neighboring agent j for all j ∈ Ni and i ∈ V . A
distributed optimization algorithm then can be obtained by applying
the standard ADMM algorithm [7] to problem (2). Specifically, let
{uij} and {vij} be the dual variables associated with constraints
(2b) and (2c), respectively. It has been shown in [8] that, given that
u

(0)
ij +v

(0)
ij = 0 ∀i, j, the ADMM iterations for problem (2) at each

iteration k are given by

u
(k)
ij = u

(k−1)
ij +

c

2
(x

(k−1)
i − x

(k−1)
j ) ∀j ∈ Ni, i ∈ V, (3)

v
(k)
ij = v

(k−1)
ij +

c

2
(x

(k−1)
j − x

(k−1)
i ) ∀j ∈ Ni, i ∈ V, (4)

x
(k)
i = arg min

xi

fi(Aixi) + gi(xi) +
∑

j∈Ni

(u
(k)
ij + v

(k)
ji )Txi

+ c
∑

j∈Ni

∥∥xi −
x

(k−1)
i + x

(k−1)
j

2

∥∥2

2
∀i ∈ V, (5)

where c > 0 is a penalty parameter. By further letting p
(k)
i =∑

j∈Ni
(u

(k)
ij + v

(k)
ji ) ∀i ∈ V , steps in (3) to (5) boil down to Algo-

rithm 1.

Algorithm 1 Consensus ADMM (C-ADMM)

1: Given initial variables x(0)
i ∈ R

K and p
(0)
i = 0 for each agent

i, i ∈ V . Set k = 1.
2: repeat
3: For all i ∈ V
4: p

(k)
i = p

(k−1)
i + c

∑
j∈Ni

(x
(k−1)
i − x

(k−1)
j ).

x
(k)
i =arg min

xi∈X
fi(Aixi) + gi(xi) + xT

i p
(k)
i

+ c
∑

j∈Ni

∥∥xi −
x

(k−1)
i + x

(k−1)
j

2

∥∥2

2
. (6)

5: Set k = k + 1.
6: until a predefined stopping criterion (e.g., a maximum iteration

number) is satisfied.

One can see from Step 4 of Algorithm 1 that each agent i updates
the variables (x(k)

i ,p
(k)
i ) in a fully parallel manner. Moreover, each

agent i uses the local function fi(Aixi) + gi(xi) and messages
x

(k−1)
j j ∈ Ni from its neighbors only. It has been shown in [8] that,

under Assumptions 1 and 2, Algorithm 1 is guaranteed to converge
and limk→∞ x

(k)
i = x� ∀i ∈ V, where x� denotes an optimal

solution to (P). Algorithm 1 can also converge linearly, e,g., when
fi(Aixi)’s are strongly convex and gi’s are absent [10, 11] or when
gi’s satisfy certain error bound assumption [12].

It is important to note that Algorithm 1 may not be easy to im-
plement since, at each iteration, agent i has to solve subproblem (6)
globally. For example, consider the following sparse logistic regres-
sion (LR) problem [16]

min
x∈X

N∑

i=1

( M∑

m=1

log

(
1 + exp(−bimaT

imx)

)
+

λ

N
‖x‖1

)
, (7)

where λ > 0 is a regularization parameter, Ai = [ai1, . . . ,aiM ]T

contains M training data collected by agent i and bim ∈ {±1},
m = 1, . . . ,M , are the associated binary labels. The LR problem as
in (7) arises in many applications, including document classification,
computer vision and language processing, to name a few. When
C-ADMM is applied to (7), the associated subproblem (6) would
not yield simple solutions, and additional numerical solver has to be
employed. When the problem dimension is large, obtaining a high-
accuracy solution of (6) can be computationally expensive. While
a low-accuracy solution can be adopted for complexity reduction, it
may impair the convergence behavior of C-ADMM considerably.

4. PROPOSED INEXACT CONSENSUS ADMM

In this section, aiming at reducing the computation overhead, we
propose an inexact consensus ADMM (IC-ADMM). In IC-ADMM,
instead of solving subproblem (6) directly, we consider the following
update of x(k)

i :

x
(k)
i = arg min

xi∈X
∇fi(Aix

(k−1)
i )TAi(xi − x

(k−1)
i )

+
β

2
‖xi − x

(k−1)
i ‖22 + gi(xi) + xT

i p
(k)
i

+ c
∑

j∈Ni

∥∥xi −
x

(k−1)
i + x

(k−1)
j

2

∥∥2
, (8)

where β > 0 is a penalty parameter. Equation (8) is obtained by re-
placing fi(Aixi) in (6) with its linearized and regularized counter-
part ∇fi(Aix

(k−1)
i )TAi(xi−x

(k−1)
i )+ β

2
‖xi−x

(k−1)
i ‖22. Define

proxgi(s) � arg min
x∈X

gi(x) +
γi
2
‖x − s‖2 (9)

as a proximity operator [13], where γi = β + 2c|Ni|. Equation (8)
can be shown to be equivalent to the following proximal gradient
(PG) step

x
(k)
i = proxgi

[
1

γi

(
βx

(k−1)
i −AT

i ∇fi(Aix
(k−1)
i )x

(k−1)
i − p

(k)
i

+ c
∑

j∈Ni

(x
(k−1)
i + x

(k−1)
j )

)]
. (10)

It is known that a PG update like (10) can often have close-form ex-
pressions, especially when gi’s are so called sparse promoting func-
tions. For example, when gi(x) = ‖x‖1 and X = R

K , (9) has a
closed-form solution known as the soft thresholding operator [13]:

S[s, 1

γi

]
= (s− 1

γi
1)+ + (−s− 1

γi
1)+, (11)
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where (x)+ = max{x, 0} and 1 is an all-one vector. The proposed
IC-ADMM method is presented in Algorithm 2.

Algorithm 2 Proposed Inexact Consensus ADMM (IC-ADMM)

1: Given initial variables x(0)
i ∈ R

K and p
(0)
i = 0 for each agent

i, i ∈ V . Set k = 1.
2: repeat
3: For all i ∈ V
4: p

(k)
i = p

(k−1)
i + c

∑
j∈Ni

(x
(k−1)
i − x

(k−1)
j ).

5: Update x
(k)
i by (10).

6: Set k = k + 1.
7: until a predefined stopping criterion is satisfied.

To show the convergence of IC-ADMM, we make the following
assumption on f ′

is.

Assumption 3 For all i ∈ V , the smooth function fi is strongly
convex, i.e., for some σ2

f > 0,

(∇fi(x)−∇fi(y))
T (x− y) ≥ σ2

f‖x− y‖22 ∀x,y ∈ R
M ,

Moreover, fi has Lipschitz continuous gradients, i.e.,

‖∇fi(x)−∇fi(y)‖2 ≤ Lf,i‖x− y‖2 ∀x,y ∈ R
M , (12)

for some Lf > 0.

Note that, even under Assumption 3, fi(Aix) is not necessarily
strongly convex in x since the mapping matrix Ai is allowed to be
fat and rank deficient. Both the LASSO problem [8, 9] and the LR
problem in (7) (given that X is compact) satisfy Assumption 3. Our
main convergence result of IC-ADMM is given below.

Theorem 1 Suppose that Assumptions 1, 2 and 3 hold and let

β >
L2

f

σ2
f

λmax(Ã
T Ã)− cλmin(D +W ) > 0, (13)

where Ã = blkdiag{A1, . . . ,AN} (block diagonal) and λmax and
λmin denote the maximum and minimum eigenvalues, respectively.

(a) Then, {x(k)
1 , . . . ,x

(k)
N } in Algorithm 2 converges to a com-

mon point x� that is optimal to (P).
(b) If gi’s are removed from (1) and Ai’s have full column rank

(i.e., fi(Aix) is strongly convex in x for all i), then the se-
quence ‖x(k)−x�‖2M+ 1

c
‖u(k+1)−u�‖2 converges linearly,

where x(k) = [(x
(k)
1 )T , . . . , (x

(k)
N )T ]T , u(k)

i ∈ R
K|Ni| is a

vector that stacks u(k)
ij ∀j ∈ Ni [see (3)], u(k) = [(u

(k)
1 )T , ..

., (u
(k)
N )T ]T , and

G = βIKN + c((D +W ) ⊗ IK) 
 0, (14)

M =

[
1

2
G+ α(σ2

f − ρ

2
)ÃT Ã

]1/2

 0, (15)

for some 0 < α < 1 and ρ > 0. Here, IK is the K × K
identity matrix.

Due to the space limitation, the proof of Theorem 1 is presented
in [17]. Theorem 1(a) implies that, given a β satisfying (13), IC-
ADMM ensures that all agents achieve consensus and attain the op-
timal solution of (P). Theorem 1(b) further asserts that IC-ADMM
can converge linearly if fi(Aixi) is strongly convex in xi for all i
and the non-smooth gi’s are not present. Theorem 1(b) thus extends
the analysis result in [10] of C-ADMM to the IC-ADMM.

Two remarks regarding the proposed IC-ADMM are in order.

Remark 1 In [8], several alternatives were proposed to reduce the
complexity of C-ADMM for solving the LASSO problem. However,
these approaches are specifically devised for the least squared error
function of LASSO, and may not provide simple solutions for, for
instance, the LR problem in (7). Our IC-ADMM by contrast are ap-
plicable to a wider range of problems. On the other hand, one should
note that the proposed IC-ADMM is different from the existing in-
exact ADMM in the optimization literature; see [14, 15] where the
inexact update is obtained by linearizing the quadratic terms caused
by the augmented Lagrangian function. The work [18] considered
linearizing the cost function but requires additional back substitution
steps and is not designed for multi-agent distributed optimization.

Remark 2 The value of λmin(D+W ) in (13) depends on the net-
work topology. Let L = D − W be the Laplacian matrix of G.
Then D+W = 2D−L. By the graph theory [19], the normalized
Laplacian matrix, i.e., L̃ = D− 1

2LD− 1
2 , have λmax(L̃) ≤ 2 and

λmax(L̃) < 2 if and only if the connected graph G is not bipartite.

Thus, we have λmin(D + W ) = λmin(D
1
2 (2IN − L̃)D

1
2 ) ≥ 0,

and λmin(D +W ) > 0 whenever G is non-bipartite.

5. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we examine the numerical performances of C-ADMM
(Algorithm 1) and the proposed IC-ADMM (Algorithm 2) by con-
sidering the LR problem in (7). To generate the training data Ai’s,
we considered images D24 and D68 of the Brodatz data set (http:
//www.ux.uis.no/˜tranden/brodatz.html). We rando-
mly extracted MN/2 overlapping patches with dimension

√
K ×√

K from the two images, respectively, followed by vectorizing the
MN patches into vectors and stacking them into an MN ×K ma-
trix. After a random shuffle the order of rows of this matrix, we par-
titioned the matrix into N submatrices each with dimension M×K,
which were then used as the training data A1, . . . ,AN . The binary
labels were generated accordingly with 1 for one image and −1 for
the other. The feasible set was set to X = {x ∈ R

K | |xi| ≤ 1 ∀i}.
To implement Algorithm 1, we employed the fast iterative shrink

age-thresholding algorithm (FISTA) [20, 21] to solve subproblem
(6). For (6), the associated steps can be shown as

x̃
(�)
i = S

[
z
(�−1)
i − ρ

(�)
i

[
AT

i ∇fi(Aiz
(�−1)
i ) + p

(k)
i

+ 2c
∑

j∈Ni

(z
(�−1)
i − x

(k−1)
i + x

(k−1)
j

2
)

]
,
λρ

(�)
i

N

]
, (16a)

z
(�)
i = x̃

(�)
i +

�− 1

�+ 2
(x̃

(�)
i − x̃

(�−1)
i ), (16b)

where � denotes the inner iteration index of FISTA, ρ(�)i > 0 is a step
size and S is the soft thresholding operator defined in (11). Suppose
that FISTA stops at iteration �i(k). We then set x(k)

i = x̃
(�i(k))
i

for subproblem (6). The stopping criterion of (16) was based on the
PG residue (pgr) pgr = ‖z(�−1)

i − x̃
(�)
i ‖/(ρ(�)i

√
K) [20, 21]. For

obtaining a high-accuracy solution of (6), one may set the stopping
criterion as, e.g., pgr < 1e−5.

By applying the proposed IC-ADMM to (7), the corresponding
(10) can be shown to be

x
(k)
i =

1

γi
S
[
βx

(k−1)
i −AT

i ∇fi(Aix
(k−1)
i )− p

(k)
i

+ c
∑

j∈Ni

(x
(k−1)
i + x

(k−1)
j ),

λ

N

]
. (17)
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Fig. 1. Convergence curves for the example of N = 10, K =
10, 000, M = 10, λ = 0.1.

By comparing (17) with (16a), one can see that, for each agent i,
the computational complexity of Algorithm 1 per iteration k (we
refer this as the “ADMM iteration (ADMM Ite.)”) is roughly �i(k)
times that of Algorithm 2. To measure the computational complexity
of Algorithm 1, we count the total average number of FISTA itera-
tions implemented by each agent before Algorithm 1 stops. More
precisely, suppose that the total number of ADMM iterations of Al-
gorithm 1 is k̄. Then the complexity per agent due to Algorithm 1 is
measured as

Computation iteration (Compt. Ite.) =
1

N

k̄∑

k=1

N∑

i=1

�i(k).

By contrast, the complexity per agent due to Algorithm 2 is simply
given by k̄ if the total number of ADMM iterations of Algorithm 2 is
k̄. The stopping criterion of Algorithms 1 and 2 was based on mea-
suring the solution accuracy acc = (obj(x̂(k))− obj�)/obj� and
variable consensus error cserr =

∑N
i=1 ‖x̂(k) − x

(k)
i ‖2/N , where

x̂(k) = (
∑N

i=1 x
(k)
i )/N , obj(x̂(k)) denotes the objective value of

(P) given x = x̂(k), and obj� is the optimal value of (P) which was
obtained by using FISTA [20,21]. The two algorithms are set to stop
whenever acc and cserr are both smaller than preset target values.

In Table 1(a), we consider a simulation example of N = 10,
K = 10, 000, M = 10, λ = 0.1 and display the comparison re-
sults. The stopping conditions of C-ADMM and IC-ADMM are acc

Table 1. Comparison of C-ADMM and IC-ADMM.

(a) N = 10, K = 10, 000, M = 10, λ = 0.1.

C-ADMM C-ADMM IC-ADMM
(pgr < 10−5) (pgr < 10−4)

ADMM Ite. 810 675 2973

Compt. Ite. 81,459 30,648 2973

acc< 10−4 9.982 × 10−5 9.91 × 10−5 9.99 × 10−5

cserr< 10−5 1.53 × 10−6 3.425× 10−4 3.859× 10−9

(b) N = 50, K = 10, 000, M = 10, λ = 0.15.

C-ADMM C-ADMM IC-ADMM
(pgr < 10−5) (pgr < 10−4)

ADMM Ite. 952 N/A 7,251

Compt. Ite. 1.432× 105 N/A 7,251

acc< 10−4 9.99 × 10−5 N/A 9.999 × 10−5

cserr< 10−5 1.305 × 10−7 N/A 1.169× 10−10

< 10−4, cserr < 10−5. For C-ADMM, we considered two cases,
one with the stopping condition of FISTA for solving subproblem
(6) set to pgr < 10−5 and one with that set to pgr < 10−4. The
penalty parameter c for C-ADMM was set to c = 0.03 and the step
size ρ

(�)
i of FISTA (see (16)) was set to a constant ρ(�)i = 0.1. The

penalty parameters c and β of IC-ADMM were set to c = 0.01
and β = 1.2. We observe from Table 1 that IC-ADMM in general
requires more ADMM iterations than C-ADMM (around 4 times);
however, the required computation complexity is significantly lower.
Specifically, the number of computation iterations of IC-ADMM is
around 81, 459/2973 ≈ 27.4 times lower than that of C-ADMM
(pgr < 10−5). We also observe that C-ADMM (pgr < 10−4) con-
sumes a smaller number of computation iterations for achieving acc
< 10−4. However, the associated cserr=3.425×10−4 is quite large.
In fact, C-ADMM (pgr < 10−4) cannot reduce cserr properly. To
see more clearly, we plot the acc and cserr curves of C-ADMM and
IC-ADMM in Figure 1. One can see from Figure 1(b) that the cserr
curve of C-ADMM (pgr < 1e−4) keeps relatively high and does not
decrease along the iterations. When one further reduces the accu-
racy of FISTA to pgr < 10−3, C-ADMM converges very slowly, as
shown in Fig. 1. In the figure, we also plot the convergence curves
of the consensus subgradient method in [5], where the diminishing
step size 10/k was used. While the consensus subgradient method
is also simple, it converges much slower than IC-ADMM.

In Table 1(b), we considered another example with the network
size increased to N = 50. We set c = 0.004 for C-ADMM and
ρ
(�)
i = 0.1 for FISTA; while for IC-ADMM, we set c = 0.008

and β = 1.2. We can observe similar comparison results from Ta-
ble 1(b). Specifically, the number of computation iterations of IC-
ADMM is around 19.7 times lower than C-ADMM (pgr < 1e−5);
when considering a lower accuracy of pgr < 10−4, it is found that
C-ADMM cannot properly converge.

Since one ADMM iteration corresponds to one time of com-
munication between neighboring agents, the numerical results pre-
sented above indicate that IC-ADMM gains complexity reduction in
the expense of communication overhead. Therefore, IC-ADMM is
suitable for applications where message exchanges between neigh-
boring agents can be achieved cheaply; for example, distributed data
servers connected via dedicated fiber links or distributed micropro-
cessors in a computer system.
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