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ABSTRACT

This work proposes a novel probabilistic multi-attribute item
ranking framework to estimate the probability of an item being a
user’s best choice and rank items accordingly. It uses indifference
curve from microeconomics to model users’ personal preference,
and addresses the inter-attribute tradeoff and inter-item competition
issues at the same time with little information loss. The proposed
framework also considers the fact that a user can only compare a
few items at the same time, and models the user’s selection process
as a two-step process, where the user first selects a few candidates,
and then makes detailed comparison. Simulation results show that
the proposed framework significantly outperforms existing multi-
attribute ranking algorithms in terms of ranking quality.

1. INTRODUCTION

With the proliferation of social networks and online communities
in the past decade, users are provided with massive amount of in-
formation and choices, and we are entering the “big data” era. To
improve user experience and provide personalized services, person-
alized ranking plays an important role in web searching [1], database
queries [2], and recommender systems [3] in eCommerce and social
networks. Based on a user’s personal preference and the user’s ex-
plicit/implicit query, the algorithm ranks a set of items considering
their relevance to the query [2], importance to the user [1], and match
to the user’s personal interest [3], etc. Then, the items are presented
to the user according to their ranks. Personalized ranking helps the
user quickly find the item/information that he/she needs.

Many personalized ranking algorithms have to consider multi-
ple attributes of the items and address the inter-attribute tradeoff, for
example, the tradeoff between reputation and price in eCommerce.
There are currently two types of works to address this issue. The
first tries to identify important attributes, and organize them into an
importance hierarchy [4,5]. However, such methods may reduce the
recommended items but cannot rank them. The second type uses at-
tribute weighting [6] to quantify the relative importance of different
attributes [7–9]. However, predetermined weights and normalization
functions restrict the formation of personalized preferences, and they
fail to address the inter-item competition, where a competitive item
may reduce the chance of other items being selected.

To address the inter-item competition, the work in [10] pro-
posed a personalized Multi-Attribute Probabilistic Selection frame-
work (MAPS). In [10], each attribute is considered to be one di-
mension in a multi-dimensional space, and every item to compare is
mapped to a point in the space. They use visual angle, the angle of
the line connecting an item and the origin, to model users’ personal
preference, and to address the inter-attribute tradeoff and inter-item

competition simultaneously. However, the visual angle approach re-
duces the dimensionality of the attributes by one, and causes infor-
mation loss and incomplete description of users’ preference.

In this work, we propose a novel probabilistic ranking frame-
work using the concept of indifference curve from microeconomics,
which offers a flexible way to model users’ preference and addresses
inter-attribute tradeoff and inter-item competition with little infor-
mation loss. In addition, different from all prior works that assume
users compare all items simultaneously, the proposed framework ad-
dresses the fact that a user have bounded rationality and can only
compare a few items at the same time [11–13]. It models the user’s
decision making as a two-step selection process, where a user first
selects a few candidates and then makes detailed comparison. Fur-
thermore, the proposed framework outputs the probability that an
item is the user’s best choice, which provides important guidelines
on appropriate pricing schemes, estimations of the market demand,
and marketing strategies.

The rest of the paper is organized as follows. Section 2 intro-
duces the proposed framework, and Section 3 provides detailed de-
scription of the proposed algorithms for user preference estimation
and personalized ranking. Simulation results are shown in Section
4, and conclusions are drawn in Section 5.

2. THE PROPOSED FRAMEWORK

2.1. Problem Formulation
In this paper, we consider ranking items in an online shopping plat-
form with two conflicting attributes, price and reputation, and our
work can be extended to ranking items with more than two conflict-
ing attributes. Consider a user query, which returns a list of match-
ing items. For a matching item with price P ∈ [PMIN , PMAX ]
and reputation R ∈ [RMIN , RMAX ], we normalize both reputa-
tion and price into the range [0, 1] using a simple linear mapping
function p = (PMAX − P )/(PMAX − PMIN ) and r = (R −
RMIN )/(RMAX − RMIN ). In this work, we use PMAX = 103,
PMIN = 10, RMAX = 106 and RMIN = 0, and observe simi-
lar trends for other values and other normalization functions. After
normalization, for both attributes, a larger value indicates a higher
preference of the user. We use the term an item’s utility U(s) to
quantify the user’s personal level of satisfaction with the item s, and
a larger utility means higher preference.

In this work, we consider rational and consistent user behavior
with the following three assumptions [14]. The first is the mono-
tonicity assumption, where we assume that an item’s utility is higher
when an attribute value is higher with the other(s) fixed. Second,
we have the diminishing value assumption, which says users are as-
sumed to have diminishing additional level of satisfaction with the
increase of a certain attribute’s value. That is, with the other attribute
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Fig. 1: An indifference map with U(G) > U(F ) > U(A) = · · · =
U(E).

values fixed, as one attribute value increases, the additional level of
satisfaction that the user obtains decreases [14]. Last, we assume
that users have bounded rationality [11, 12] and can only compare a
few (usually 3 to 5) multi-attribute items at a time [13].

Given a set of items, an item is a skyline item if and only its
attributes are not all worse (smaller) than those of any other items
[15]. From the monotonicity assumption, a non-skyline item whose
attributes are all smaller than those of a skyline item has a lower
utility, and thus will never be picked by the user. Therefore, in our
work, we consider skyline items only.

Denote the set of N skyline items as S = {si = {pi, ri}}, and
without loss of generality, we sort them in the ascending order of
normalized reputation with r1 < · · · < rN and p1 > · · · > pN .
We map all items into points in a two-dimensional space with the X
and Y axes being the normalized price and reputation, respectively.
In the following, we will use the two terms “point” and “item” inter-
changeably to represent the same concept.

Given N skyline items S, a user considers the tradeoff be-
tween price and reputation based on his/her personal preference,
and chooses his/her personal best choice sb. Due to the bounded
rationality, we assume that a user first preselects n interested
items/candidates from the set S. He/she then makes detailed com-
parison within the n items and finds the best choice sb. For a given
user, the goal of the proposed multi-attribute ranking algorithm is
to understand the user’s personal preference between the conflicting
attributes and to rank the items accordingly such that the user’s true
best choice sb is ranked as high as possible. In this work, we only
consider the fixed-price buy-it-now market but not those requiring
auctions. Also, we consider a dynamic market, where items can
enter or exit the online market at any time, and where price and
reputation change with time.

2.2. Indifference Curve and Marginal Rate of Substitution
In this work, we use the concept of indifference curve to model
users’ personal preference. An indifference curve is a graph show-
ing different combinations of factors among which a user is indif-
ferent, and points on the same indifference curve have the same util-
ity value [14]. An indifference map is a collection of indifference
curves with different utility values for a user, as shown in the exam-
ple in Fig. 1. Indifference curves have three properties [14]: First,
an indifference curve is always a non-increasing function. Second,
different indifference curves do not intersect. Third, when compar-
ing two indifference curves, the top one has a higher utility and is
preferred by the user. With these properties, the problem of user
preference modeling is changed to the estimation of the indifference
curves, from which we can easily rank items. However, in real ap-
plications, we only have a few of the user’s transaction (purchas-
ing) records, and this limited information is insufficient to obtain the
complete indifference map.

To address this issue, we use another concept from microeco-
nomics, the marginal rate of substitution (MRS), which is the max-

imum amount of the attribute on the Y axis (normalized reputation
in this work) that a user is willing to give up to obtain one additional
unit of the attribute on the X axis (normalized price). To simplify
the analysis, we assume in this work that the indifference curves are
continuously differentiable. Then, MRS at a given point is the mag-
nitude of the slope of the indifference curve evaluated at that point.
In this work, we use MRS as partial knowledge of the indifference
curve to help model users’ personalized preference.

MRS has an important diminishing property that can help us
extract information of the indifference curves and users’ preference
from a finite number of purchasing records. From the diminishing
value assumption, as the price (reputation) increases, the additional
satisfaction that user gains with one more unit increment of price
(reputation) decreases. Consequently, with user’s satisfaction fixed,
as the price (reputation) increases, the user is willing to give up less
on reputation (price) to gain an additional unit of price (reputation).
Therefore, MRS decreases as the price increases along the curve,
and the continuously differentiable indifference curves are convex.

Indeed, with only a few purchasing records, we cannot extract
perfect information of MSRs of the complete price-reputation plane,
but can only estimate their ranges at a few points. Still, as will be
demonstrated later, these estimated slope ranges can help capture
users’ preference and offer good ranking quality.

Based on the above, given a few user’s purchasing records, our
proposed framework first extracts user’s personal preference and es-
timates the ranges of the slopes of the indifference curves at differ-
ent points in the 2D price-reputation plane. Then given a new set
of skyline items, for each item, we use the estimated slope ranges
to estimate the probability that it is the user’s best choice, and then
rank them based on these estimated probabilities.

2.3. Performance Evaluation
Given the top-down ranking list of the N skyline items in the set
S, let vb be the ranking position of the (known) user’s best choice
sb. vb = 1 when sb is considered to have the highest probability
of being purchased by the user, and vb = N when it is considered
to be the least favorable item for the user. We use ranking quality
rq = (N −vb)/(N −1), the percentage of items ranked worse than
sb with larger ranking positions than vb, to evaluate the performance
[10]. A larger value of ranking quality indicates better accuracy,
where rq = 1 when the best choice is accurately ranked the first,
and rq = 0 when sb is ranked the last.

3. PROBABILISTIC RANKING WITH SLOPE RANGE
ESTIMATION

3.1. Slope Range Estimation
For a point s in the 2D price-reputation plane, let ks denote the true
slope of the indifference curve at s. From their properties, indiffer-
ence curves have non-positive slopes with ks ≤ 0. Given a set of the
user’s historical purchasing records, we study in the following how
to narrow down the slope range.
3.1.1 Estimation from One Transaction: We first consider one single
record where among a set of skyline items S with r1 < · · · < rN
and p1 > · · · > pN , the user purchases si as his/her best choice.
Note that item si has normalized reputation ri and price pi.

Given the best choice sb = si, we first divide the whole set S
into two subsets: the first includes all points above the best choice sb
with S+ = {si+1, · · · , sN}; and the second includes all points be-
low sb with S− = {s1, · · · , si−1}. We study these points separately
and have Theorem 1. The proof is in [16].
Theorem 1. For an item sj 6= sb, let kjb be the slope of the line
connecting sj and the best choice sb. For all sj ∈ S+, we have
ksj ≤ kjb; and for all sj ∈ S−, we have kjb ≤ ksj ≤ 0.
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Fig. 2: Refinement of estimated slope range with (a) one transaction
record, and (b) multiple transactions.

It is worth mentioning that from Theorem 1, with a single purchasing
record {S, sb}, we can only update the slope ranges of non-selected
items, but not that of the best choice sb.

Given the above initial slope range estimation, we can further
refine the estimation using the diminishing MRS property in Section
2.2. Consider the example in Fig. 2a, there are two items si+1 and
si+2 above the best choice sb = si. From Theorem 1, initially,
we have ksi+2 ≤ k(i+2)b and ksi+1 ≤ k(i+1)b with k(i+2)b >
k(i+1)b. Note that from the diminishing property of MRS, we have
ksi+2 ≤ ksi+1 . Therefore, we can update the range of ksi+2 to
ksi+2 ≤ ksi+1 ≤ k(i+1)b. Similarly, we can update the ranges for
all items in S− accordingly.
3.1.2 Refinement with Multiple Transactions: From Theorem 1, with
one purchasing record, we can update the upper bounds of the slope
ranges for all items above the best choice and the lower bounds of the
slope ranges for all items below the best choice. Now, we consider
slope range refinement with multiple transactions.

For a given item si, we divide the remaining items from all pre-
viously known transactions into four subsets: SIi = {sj : pj >
pi, rj > ri}, SIIi = {sj : pj ≤ pi, rj > ri}, SIIIi = {sj : pj ≤
pi, rj ≤ ri} and SIVi = {sj : pj > pi, rj ≤ ri}, where each
sj has its own estimated slope range [ksj , k̄sj ]. In the example in

Fig. 2b, SIi = {s1, s4}, SIIi = {s7, s9}, SIIIi = {s6, s8, s10} and
SIVi = {s2, s3, s5}.

To further refine the estimation results from multiple records, we
again use the diminishing property of MRS, and use items in SIIi to
update the lower bound of si’s slope range ksi , and use items in SIVi
to update the upper bound of si’s slope range k̄si . The diminishing
property of MRS says ksi ≤ ksj for all sj ∈ SIVi and ksi ≥ ksj for
all sj ∈ SIIi . Therefore, we update k̄si = minsj∈SIV

i ∪si{k̄sj} and
ksi = maxsj∈SII

i ∪si
{ksj}. The above estimation and refinement

enable us to convert the historical purchasing records into personal-
ized records in the price-reputation plane. Define the set of person-
alized records as H = {hi = {si, [ksi , k̄si ]}}.

The last step is to check the consistency of the estimated slope
range at each point. For point si, its estimated slope range [ksi , k̄si ]

should satisfy ksi ≤ k̄si . If ksi > k̄si , it means that the user shows
inconsistent behavior in the historical records, and the correspond-
ing personalized record hi should be discarded from H to ensure
accurate information collection.
3.2. Ranking
3.2.1 Slope Range Estimation in the New Market: Following the
above steps, we can estimate the slope ranges of the indifference
curves at a few points where there were corresponding items in the
historical records. However, given a new query in a dynamically
changing market, it is possible that there are new items that we have
no prior information about their slope ranges.

For a new item si0 , we need to estimate the upper and lower
bounds of its slope range. To estimate the upper bound, we first
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Fig. 3: (a) Two-item comparison, and (b) three-item comparison.

search all items in the historical data and find a set of its M clos-
est neighbors Su whose upper bounds are non-zero with k̄sj < 0
for all sj ∈ Su. We then estimate the upper bound of ksi0 us-
ing weighted sum k̄si0 =

∑
sj∈Su

wj k̄sj , where the weight wj =

(di0j)
−1/

∑
sj∈Su

[(di0j)
−1] is inversely proportional to the dis-

tance di0j between si0 and sj . Similarly, to estimate the lower
bound of ksi0 , we find a set of its M closest neighbors Sl among
all items in the historical data whose lower bounds are finite, and
estimate ksi0 using ksi0 =

∑
sj∈Sl

wjksj . We use M = 3 in this
work and observe similar results for other values of M .
3.2.2 Two-Step Ranking: We consider the scenario where a user first
preselects n candidates that he/she might be interested in, and then
makes detailed comparison within the n items. To find the probabil-
ity that an item si is the best choice, we first need to find all possible
preselected candidate sets SISj that includes si, and then for each
such set SISj , find the probability that si has the largest utility com-
pared to all other items in SISj .

Mathematically, let P[SISj ] be the probability that SISj is the
preselected candidate set, and let P[si = best|SISj ] denote the
probability that si is the preferred item among all in SISj . Then,
the probability that si is the user’s best choice is

Psi =
∑

SISj
:si∈SISj

P[si = best|SISj ]P[SISj ]. (1)

To model the candidate pre-selection process, we adopt the vi-
sual angle model in [10]. In particular, a preference density function
f(ψ) is used to model the probability that a user is interested in items
at angle ψ in the price-reputation plane, and we use the same method
as in [10] to estimate f(ψ). For skyline item si, define its visual an-
gle as ψi = arctan(ri/pi). Given the estimated f(ψ), from the
derivation in [16], the probability that the pre-selected candidate list
is SISj = {sj−1, sj , sj+1, sj+2} is

P[SISj ] =

∫ ψj+1

ψj

f(ψ)dψ. (2)

The next step is to compute P[si = best|SISj ], the probabil-
ity that si is the preferred item in SISj , we first consider a sim-
ple scenario of comparing two items sA and sB where sA is below
sB , as shown in Figure 3a. To determine the probability that sA is
preferred to sB , we first consider the indifference curve ICsA that
passes through sA. Since all points on ICsA have the same utility
as sA, we can compare sB with any point on ICsA . In this work,
we choose the point sA′ whose distance to sA is the same as that be-
tween sA and sB . Let kAB denote the slope of the line connecting
sA and sB , and kAA′ be the slope of the line connecting sA′ and sA.
We define function θ(k) = π+ arctan (k) to convert slope k to an-
gle θ, and we have θAB = θ(kAB) and θAA′ = θ(kAA′), as shown
in Fig. 3a. Since sA′ and sB have the same distance to sA, com-
paring their positions is equivalent to comparing the two angles θAB
and θAA′ . From Fig. 3a, it is easy to see that when θAB > θAA′ ,
sA′ is above sB and U(sA) > U(sB), and vice versa.
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Table 1: Simulation results of the ranking quality of different multi-attribute ranking algorithms.

Type 1 Type 2 Type 3 Type 4 Type 5
Indifference curve 96.55% 94.63% 97.01% 99.87% 99.41%

MAPS 90.71% 86.06% 93.56% 98.79% 99.14%

Weighted sum
Max 86.56% 76.25% 92.87% 99.99% 100%
Min 15.04% 25.16% 9.97% 0% 1.57%

Average 68.20% 61.61% 72.47% 48.0% 75.83%

To compare θAB and θAA′ , note that the indifference curve
ICsA is convex, and we have −∞ < kAA′ ≤ kA ≤ k̄A where
kA is the true slope of ICsA at point sA, and k̄A is the estimated
upper bound of kA. Define θ̄A = θ(k̄A) and θA = θ(kA). Without
any prior knowledge of θAA′ or the position of sA′ , we assume that
θAA′ is uniformly distributed in the range [π/2, θ̄A]. Note that if
θAB > θ̄A, we have θAB > θAA′ , and thus sA is always preferred
to sB . Therefore, the probability that sA is preferred to sB is

P[U(sA) ≥ U(sB)] =

{
θAB−π/2
θ̄A−π/2

if π/2 ≤ θAB ≤ θ̄A,
1 if θ̄A < θAB .

(3)

Now we consider the scenario where we compare three or more
items at the same time. We first consider the case where there are
three items sA, sB , sC where sA is below sB but above sC as shown
in Fig. 3b. Same as Fig. 3a, we consider the indifference curve ICsA
that passes through sA and find the point sA′ on ICsA that has the
same distance to sA as sB . The definitions of θAA′ and θAB are the
same as above. Similarly, we find another point sA′′ on ICsA that
has the same distance to sA as sC . Let kAC be the slope of the line
connecting sA and sC , and define θAC = θ(kAC). Let kAA′′ be the
line connecting sA and sA′′ and define θAA′′ = θ(kAA′′). Define
θA = θ(kA). Note that the indifference curve ICsA is convex.
Thus, we have kAA′ < kAA′′ and θAA′ < θAA′′ . So the probability
that sA has the largest utility among the three is equivalent to the
probability that θAA′ ≤ θAB and θAA′′ ≥ θAC under the constraint
that θAA′ < θAA′′ . Without any prior knowledge of the positions
of sA′ and sA′′ , we assume that θAA′ and θAA′′ are independent.
Following the same analysis as (3), from [16], we have

P[U(sA) ≥ U(sB), U(sA) ≥ U(sC)]

=

{ −2(θAB−π/2)(π−θAC)

(θ̄A−π)2+(π/2−θA)2−π2/4
if kAB < kAC ,

π2−θACπ−2θABπ+θAB
2+θAC

2

(θ̄A−π)2+(π/2−θA)2−π2/4
if kAB > kAC .

(4)

Using the same method, given sA, sB and sC as in Fig. 3b,
we can also calculate the probabilities that sB and sC are preferred
among the three, respectively. Detailed derivations can be found
in [16]. The comparison among four or more items is similar.

In summary, for each skyline item in a new market, we use (1)
- (4) to compute the probability that it is the user’s best choice. We
then rank all items in the descending order of Psi .

4. SIMULATION RESULTS
To validate the performance of the proposed personalized ranking
framework, we use synthetic markets to simulate practical online
shopping queries and compare the proposed framework with prior
works. Same as in [10], for each query, we generate a synthetic mar-
ket with N skyline items, where N is a randomly chosen number in
[20, 100]. Then, we generate N price values in the range [10, 103]
and N reputation values in the range [0, 106], both following the
power law distribution. Without loss of generality, we order the rep-
utation and price values from low to high with P1 < · · · < PN
and R1 < · · · < RN . Then, N skyline items are generated with
(Pi, Ri) being the ith item. We follow Section 2.1 and normalize all
prices and reputations.

To simulate users’ selection behavior, we use the widely used
Cobb-Douglas model in economics [14] to model the user’s level
of satisfaction with an item. For an item with normalized price p
and normalized reputation r, the item’s utility function is U(p, r) =
pα · rβ with α ≥ 0 and β ≥ 0 being the parameters quantifying
the importance of price and reputation to the user, respectively. We
consider five different categories of users, summarized as follows:
Type 1: Users in this category consider price and reputation to be
equally important, and we use α = β = 1 as an example.
Type 2: Users in this category consider price to be more important
than reputation, and we choose α = 2 and β = 1 as an example.
For other values of α and β with α > β, we observe the same trend.
Type 3: These users consider that reputation is more important than
price and we use α = 1 and β = 2 as an example.
Type 4: Users in this category consider price only and always
choose the cheapest item. We use α = 1 and β = 0 as an example.
Type 5: Users in this category consider reputation only and always
choose the item with the highest reputation in the market. We use
α = 0 and β = 1 as an example.
For a user, his/her utility function is used as ground truth to choose
his/her best choice with the largest utility. For each type of users, we
repeat the simulations 30,000 times and average the results.

Table 1 compares the proposed indifference curve (IC) based
method with MAPS [10] and the weighted sum approach [7–9]
where the utility function V (si) = γri + (1 − γ)pi is used to
estimate users’ personal preference. It shows the ranking quality
defined in Section 2.3. The IC based method and MAPS estimate
users’ personal preference based on their previous L = 5 pur-
chasing records, and each user in the IC based method preselects
n = 4 items for detailed comparison. Since the performance of
the weighted sum approach is very sensitive to the selected weight
parameter γ, we show its best, worst, and average performance in
Table 1. We can see that the proposed method outperforms both the
weighted sum approach and MAPS for almost all five types of users.
Even though for Type-4 (price only) and Type-5 (reputation only)
users, the weighted sum approach with the optimum weight gives
approximately the same performance as MAPS and the indifference
curve based method, its average and worst performances are much
worse, and therefore, the proposed method is preferred considering
the overall performance.

5. CONCLUSION
In this work, we proposed a novel multi-attribute probabilistic
ranking framework, which uses indifference curves to address
multi-attribute tradeoff and to model users’ personal preference
with little information loss. The proposed framework contains two
parts: estimation of the slope ranges of the indifference curves from
users’ historical purchasing records, and two-step ranking that esti-
mates the probability of each item being the user’s best choice and
ranks items accordingly. Simulation results show that the proposed
scheme outperforms existing multi-attribute ranking algorithms in
terms of ranking quality.
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