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ABSTRACT

The main contribution of this work is twofold. First, we ap-
ply, for the first time, a framework borrowed from economics
to a problem in the smart grid namely, the design of signaling
schemes between a consumer and an electricity aggregator
when these have non-aligned objectives. The consumer’s ob-
jective is to meet its need in terms of power and send a request
(a message) to the aggregator which does not correspond, in
general, to its actual need. The aggregator, which receives
this request, not only wants to satisfy it but also wants to man-
age the cost induced by the residential electricity distribution
network. Second, we establish connections between the ex-
ploited framework and the quantization problem. Although
the model assumed for the payoff functions for the consumer
and aggregator is quite simple, it allows one to extract in-
sights of practical interest from the analysis conducted. This
allows us to establish a direct connection with quantization,
and more importantly, to open a much more general challenge
for source and channel coding.

Index Terms— Best-response, Nash equilibrium, signal
quantization, smart grid, strategic information transmission.

1. INTRODUCTION

In today’s electricity networks, the energy production is
mainly driven by the consumer’s demand. However, in
the smart grid it will be more common that the consumer
will have to adapt its consumption to production e.g., when
an erasure mechanism is implemented or when the energy
source is a solar/wind farm. Obviously, the consumer and
aggregator (i.e., the entity which takes the decision to which
extent to meet the demand) will have diverging objectives
in general. As a consequence, it might happen that the con-
sumer reports a demand which is higher than the actual need
to be effectively satisfied. As, in practice, the request of
the consumer (a factory, a house, an EV’s owner, etc.) in
terms of needed power and the decision to which extent to
deliver it by the aggregator (a utility company, a distribution
network’s operator, etc) will quite often result from (auto-
mated) procedures implemented by machines, an important
engineering problem appears: How to design a point-to-point
communication system where the transmitter (or coder) and

receiver (or decoder) have diverging objectives? Indeed, the
classical paradigm in communication systems [1], assumes
that the coder and decoder have a common objective (e.g.,
to minimize the distortion or block error rate). When the
coder and decoder have non-aligned objectives, the prob-
lem of (source/channel) coding needs to be revisited. In the
present paper, we will only make a small step into the direc-
tion of answering the aforementioned fundamental question.
Nonetheless, the work reported here has the merit to bridge
an obvious gap between the economics literature and the one
of signal processing and communications.

Specifically, we consider an aggregator whose objective
is to satisfy the consumer but also to minimize the operating
cost induced by the distribution network. More precisely, the
cost of the distribution network is chosen to be the residen-
tial transformer ageing1. On the other hand, the consumer’s
ultimate objective is to obtain an amount of power (or en-
ergy) as close as possible to its actual need. Based on a
signal/message received from the consumer about its need in
terms of power, the aggregator eventually decides the amount
of power effectively allocated to the consumer. One of the
purposes of this paper is to construct a signaling scheme from
the consumer to the aggregator which would allow them to
reach a consensus or equilibrium about how to communicate
in practice (based on a suited communication standard). It
turns out that, by considering a simple but realistic model
for the aggregator and consumer costs, the problem to be
solved is a game whose formulation is related to the problem
of strategic information transmission in economics [5] and
the one of quantization. Indeed, the problem of strategic
information transmission has been introduced in [5] and de-
veloped in economics2 (see e.g., [6] for a recent survey) but
not penetrated engineering yet up to a few exceptions [7][8],
which do not consider neither the smart grid application nor
the connections with coding/quantization.
The paper is organized as follows. The problem is formulated
in Sec. 2. The signaling scheme is determined in Sec. 3

1Note that, in France, for instance, there are about 700 000 residential
transformers, which shows the importance of managing transformers ageing;
see e.g., [2][3][4] for more motivations.

2A typical example in economics is the interaction between a recruiting
officer and a job seeker (the latter has to reveal more or less information
about his state, i.e. his capabilities or expectations in terms of salary, while
the former has to decide about the salary level).
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as well as its main properties of practical interest. Sec. 4
provides numerical results to illustrate the derivations of Sec.
3. Sec. 5 concludes the paper.

2. PROBLEM FORMULATION

Fig. 1 provides several key aspects of the considered prob-
lem. We consider a consumer whose objective is to obtain
an allocated power which is as close as possible to a desired
level denoted by s ≥ 0. For this purpose, the consumer
sends a message m ∈ {1, 2, ...,M} (M < +∞) to the ag-
gregator through a perfect communication channel. Based on
the received message, the aggregator effectively provides an
amount of power which is denoted by a ≥ 0. Without loss
of generality, it is assumed that (a, s) ∈ [0, 1]2. One way of
mathematically formulating the objective of the consumer, is
to consider that he aims at maximizing the following payoff
function

uC(s, a) = −(s− a)2 +K (1)

where K ∈ R is a constant. With such a model, the consumer
both aims at meeting its need in terms of power but also at not
exceeding the desired power level, which might for instance
induce some unnecessary monetary expenses. This model can
also be very well justified when s is interpreted as a desired
quantity of energy e.g., for recharging a battery (see, e.g., [9]).
Note that here, for the sake of simplicity, we implicitly as-
sume that the energy need corresponds to a need in terms of
load or power, which is very realistic when the consumer ob-
tains a constant power transfer rate; relaxing this assumption
can be considered as a possible extension of this work. On
the other hand, the aggregator’s payoff function is assumed to
be the weighted sum of the consumer’s payoff and a payoff
function related to an operating cost induced by the grid:

uA(s, a) = uC(s, a) + ugrid(s, a)
= −(s− a)2 +K − bea

(2)

where b ≥ 0 represents a weight which translates the im-
portance of the component associated with the grid. More
precisely, the grid component represents a good model of the
ageing acceleration factor of a (residential) transformer (see
e.g., [10] which justifies why the ageing is accelerated expo-
nentially when operating above its nominal load). In the con-
text of strategic information transmission in economics [5],
the parameter b is interpreted as a bias which quantifies the di-
vergence of interests between the decision-makers which are
the consumer and aggregator here.

One of the contributions of this paper is precisely to
inspire from the original framework of [5] to design a
good/consensus/equilibrium signaling scheme between the
consumer and aggregator namely, to determine a good sig-
naling scheme in presence of diverging interests between the

Consumer

whose need is s
and payoff

uC(s, a)

Aggregator

with payoff

uA(s, a)

1. Signaling

message m

2. Aggregator’s action a

Fig. 1. The consumer (coder) has an actual need in terms of
power s which is unknown to the aggregator. The consumer
sends a message m to the aggregator (decoder). The aggre-
gator then chooses an action a, which is the amount of power
effectively allocated to the consumer. The key point is that the
aggregator and consumer have non-aligned payoff functions.

coder and decoder. First, the consumer should map its knowl-
edge about its actual power need s into the message sent to
the aggregator m, which amounts to determining a coding
function f defined by:

f :

∣∣∣∣
[0, 1] → {1, 2, ...,M}
s &→ m

. (3)

Second, the aggregator has to perform the decoding operation
by implementing:

g :

∣∣∣∣
{1, 2, ...,M} → [0, 1]

m &→ a
. (4)

As a first comment note that f and g are deterministic map-
pings instead of conditional probabilities q(m|s) and r(a|m);
this choice does not induce any loss in terms of expected pay-
off because uA and uC are concave. If b = 0 and the power
need s is seen as the realization of a random variable whose
distribution p(s) is effectively known to the coder and decoder
(this corresponds to a particular scenario in terms of beliefs),
the problem of determining f and g can be seen as an instance
of a scalar quantization problem which is itself a special case
of lossy source coding [11]. But, in general b > 0 and, even if
the distribution p(s) is known to both the coder and decoder,
the consequence of this simple difference is that the coder,
knowing that the decoder has a different objective, will not
maximize its expected payoff by revealing its actual need in
terms of power. Rather, it will reveal only a degraded ver-
sion of it and, this, even if M is infinite. As explained in the
following section, in general, equilibrium signaling schemes
only exploit a fraction of the number of available messages
(or bits).

3. PROPOSED SIGNALING SCHEME

3.1. Methodology. Connection with quantization

In the presence of decision-makers having different payoff
functions and which can only control some variables of the
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latter, the very meaning of optimality is unclear and the prob-
lem needs to be defined before being solved (see e.g., [12]).
In this context, one important solution concept is the Nash
Equilibrium (NE), which is a vector of strategies from which
no decision-maker or player has anything to gain by chang-
ing his own strategy unilaterally. Here, we are in the presence
of two players namely, the aggregator and consumer. The
strategy of the consumer consists in choosing f , which corre-
sponds to choosing a partition of the space of possible power
needs i.e., [0, 1]. With each interval is associated a message
m ∈ {1, ...,M} intended for the aggregator. The strategy of
the aggregator consists in choosing g to generate the action a,
which can be interpreted as choosing a representative of the
interval associated with the received message m; these inter-
vals are denoted by Im = [sm, sm+1]. Here, the connection
with the quantization problem can be established. Typically,
the quantization problem consists in minimizing the distor-
tion E

[
(s− ŝ)2

]
(ŝ = a in our setting), with respect to f

and g. If f and g are optimized separately, the problem can
be interpreted as a game where one player chooses f and the
other chooses g. Since the cost functions are common and the
number of message M is fixed, this defines a potential game
[13][14]. In this type of games, it is known that the iterative
procedure consisting in optimizing the cost/payoff function
w.r.t. f for a fixed g, then to optimize it w.r.t. g for the updated
f , and so on, converges to an NE. This procedure is called the
sequential best-response (BR) dynamics in game theory, the
BR of a player being the set-valued function which provides
the set of strategies which maximize the payoff of this player
for a given strategy for the other. The Lloyd-Max algorithm
precisely implements this procedure and converges to an NE.
Indeed, the intersection points between the players’ BRs are
precisely the NE of the game. In the next section, we deter-
mine the BRs in the considered setting in which players have
different payoff functions.

3.2. Aggregator’s best-response

When the aggregator receives a message m, it knows that the
actual consumer’s power need s is in the interval Im but not its
exact value. Therefore, in general, given the knowledge of the
message, the aggregator has a certain belief about the power
need, which is denoted by πA(s|m). The aggregator best-
responds to the message by maximizing the expected payoff
that is,

a⋆(m) =

∫ 1

0

uA(a, s)πA(s|m)ds. (5)

Here, we assume that this belief is chosen to be a uni-
form probability distribution over the interval Im which cor-
responds to the case where the aggregator has no statistical
information at all about the consumer’s power need; other
scenarios in terms of belief are left as extensions. The fol-
lowing proposition provides the expression of the aggregator
BR i.e., the best representative of the interval Im.

Proposition 1. Given a partition scheme f (or m(s)), the

aggregator’s best-response a⋆(m) to a message m is:

a⋆(m) =

∣∣∣∣∣
sm −W

(
b e

sm

2

)
if sm > b

2

0 if sm ≤ b

2

(6)

where sm = sm+sm+1

2
and W is the Lambert W function3.

The proof of this result is not provided here. It is con-
structed from arguments exploited in [5] which uses a useful
property (called the single crossing condition) of the payoff
functions. This property is as follows:

∀i ∈ {A,C} ,

⎧
⎪⎨

⎪⎩

∀s, ∃a, ∂ui

∂s
(s, a) = 0

∀(a, s), ∂
2
ui

∂s2
(a, s) < 0

∀(a, s), ∂
2
ui

∂s∂a
(a, s) > 0

. (7)

The above result shows that it is possible to express the aggre-
gator’s best action (for a given message) in a simple way. The
first term of the optimal action corresponds to what is called
the centroid in quantization. The presence of the second term
is precisely due to the fact that the coder and decoder have
diverging interests. In the extreme case where b → 0, the
optimal action for the aggregator therefore corresponds to the
centroid whereas the optimal action is simply 0 when b → ∞.

3.3. Consumer’s best-response

The consumer’s strategy is to choose a partition of the
power need space [0, 1] into intervals I1, I2, ..., IM with
Im = [sm, sm+1]. In contrast with a classical quantization
problem, the number of messages (or bits) to be used to form
the partition is not fixed and can be optimized by the con-
sumer in order to maximize its expected payoff function for a
given action. This feature constitutes an important technical
difference which can be incorporated in a non-trivial manner.
One key result of [5] which we re-exploit here is that the
optimal partition structure can be built from an optimality
condition called the arbitrage condition. Intuitively, if the
consumer power need s is exactly sm, then the consumer
should be indifferent between sending the messages m − 1
(associated with the interval [sm−1, sm]) and m (associated
with the interval [sm, sm+1]). By exploiting this optimality
condition and the single crossing condition (7), the following
proposition can be proved.

Proposition 2. Let M⋆
b be the number of optimal partitions.

For a given L ≤ M⋆
b

, the optimal partition for the consumer

can be defined recursively as:

⎧
⎪⎪⎨

⎪⎪⎩

s⋆0 = 0
s⋆m+1 = φb(2s

⋆
m − φ−1

b
(s⋆m−1 + s⋆m))− s⋆m,

1 ≤ m ≤ L− 1
s⋆L = 1

(8)

3Some basics on the Lamber W function can be found here:
http://mathworld.wolfram.com/LambertW-Function.html
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where φb(x) = 2x+ bex and φ−1
b

its inverse function.

Prop. 1 and 2 completely define the signaling scheme
for the problem under investigation. Indeed, when the con-
sumer chooses a partition of the power need space accord-
ing to Prop. 2 and the aggregator chooses the representatives
according to Prop. 1 , we obtain an NE. The number M⋆

b

corresponds to the number of NE. This number can be ob-
tained by choosing a certain s1 = b + ϵ and determining
the partition s2(s1), s3(s1), ... through s⋆m+1 = φb(2s⋆m −
φ−1
b

(s⋆m−1 + s⋆m)) − s⋆m, and keeping the greatest integer m
such that s⋆m+1 < 1. It can be shown [5] that an NE based on
partition exploiting L ∈ {1, 2, ...,M⋆

b } messages is better ex
ante for both players than another NE which exploits L′ < L
messages. If the bias is greater than a threshold β, M⋆

b
= 1,

which means that the consumer’s message set is a singleton
and no information is revealed to the aggregator. This thresh-
old is important in practice because it allows a designer to
know under which conditions a given signaling-based power
production cannot be implemented. As a last comment on
Prop. 1, note that when b → 0, the recursive equation boils

down to s⋆m+1 = 2s⋆m− s⋆m−1 i.e., s⋆m =
s
⋆

m−1+s
⋆

m+1

2
. There-

fore, a partition similar to uniform quantization is obtained.

4. NUMERICAL RESULTS

We assume that the consumer’s power need is distributed uni-
formly over [0, 1], K = 1, and we study the influence of the
parameter b. In practice, b can be determined by the weight
the aggregator puts on the transformer’s cost but also physi-
cal parameters such as the ambient and hot-spot temperatures,
and the nominal load [10]. Fig. 2 quantifies the relation be-
tween the bias and the maximum number of messages used
at equilibrium (which also corresponds to the number of NE).
Here, for b ≥ β, with β ∼ 0.25, the consumer does not reveal
anything about its need in terms of power to the aggregator.
When b → 0, the number of messages becomes high and,
will be limited, in practice, e.g, by the communication chan-
nel capacity. Fig. 3 shows the expected payoff obtained by
the aggregator (“A”) and consumer (“C”) as a function of b
in different scenarios. The three bottom curves correspond to
the aggregator’s payoff when: 1) “A” has access to no mes-
sage; 2) “A” receives the message from “C” (equilibrium pay-
off); 3) “A” is given the perfect knowledge of the power need.
The loss induced by the uncertainty on the power need corre-
sponds to the gap between 1) and 3), which may be typically
much higher for other payoff functions. The three top curves
correspond to the consumer’s payoff when: 4) “C” a = s; 5)
“A” knows the actual power need; 6) “C” sends a message to
“A” (equilibrium payoff).
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5. CONCLUSION

Obviously, the model used in this work can be generalized
in many respects e.g., in terms of payoff functions, in terms
of beliefs about the source/need distribution, and also by
considering sequence of actions instead of a single action.
The framework which is exploited in this paper goes beyond
the quantization aspects and the new connections established
between [5] and quantization and opens new technical chal-
lenges which concern the general problem of source and
channel coding when the coders and decoders have different
performance criteria.
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