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ABSTRACT

We consider the distributed allocation of spectrum in a
heterogeneous wireless network. We model this as a non-
cooperative game, where multiple players decide which chan-
nels to transmit on. When co-channel interference between
players is symmetric and channel utilities are additive, we
define a generalized ordinal potential function for the game
which is motivated by the energy function in Ising models.
This guarantees convergence of best-response dynamics, and
does not depend on the level of interference between players
or on the price imposed on each channel.

Index Terms— Heterogeneous networks; network selec-
tion; ordinal potential games; congestion games

1. INTRODUCTION

In heterogeneous wireless networks, multiple radio access
technologies (RATs) coexist in the same network and are
collectively able to provide better coverage, quality of ser-
vice (QoS), and mobility support than if they were operating
in isolation. To capitalize on the benefits of heterogeneous
networks one needs to be able to transmit on multiple RATs
simultaneously. This capability is found in multi-mode ter-
minals (MMTs), which are able to access multiple bands
simultaneously. We refer to these bands abstractly as “re-
source blocks (RBs)”[1].

MMTs interfere with other MMTs sharing the same RBs,
causing degradation in the QoS. The utility of an RB to an
MMT is modelled as a function that decreases as the con-
gestion increases. We formulate this as a non-cooperative
game with partial information, where each MMT acts in a
self-interested manner in trying to maximize its own utility.
We show that best-response updates can be expressed as sim-
ple threshold policies in the RB selection game. When con-
gestion between MMTs is symmetric, we define a generalized
ordinal potential function for the RB selection game. We fi-
nally show that the convergence of best-response dynamics to
a pure strategy Nash equilibrium is independent of any (fixed)
channel prices that may be imposed on each RB, allowing net-
work managers to optimize the channel price without worry-
ing about convergence issues.

An analysis of the interactions between users on a shared
wireless channel with partial information has been carried out
in [2]. The paper gives a detailed characterization of the equi-
libria achievable when 2 users share a channel, knowing only
their signal-to-noise ratio. In this paper, we expand the scope
of consideration to networks with larger numbers of users and
channels. Congestion games [3] and its generalizations (such
as graphical congestion games [4]) have been widely used to
model such scenarios. Instead of approximating our game us-
ing a congestion game or exact potential game, as in [5], we
show that the RB selection game restricted to one channel is
an ordinal potential game, which further generalizes conges-
tion games and graphical congestion games, and can be in-
terpreted as a graphical congestion game on a weighted com-
plete graph. Ordinal potential games have been used to prove
convergence in wireless collision channels [6]. In that paper,
a rate-alignment condition was required for the derivation of
the ordinal potential function, but their simulations suggested
that this condition was not necessary for convergence. Un-
der slightly different conditions, we derive a different ordinal
potential function which does not require the rate-alignment
condition. We also consider multiple channels, and show that
the sum of each channel’s ordinal potential functions is a gen-
eralized ordinal potential function, thus giving our game the
Finite Improvement Property [7] and guaranteeing conver-
gence.

2. SYSTEM MODEL

We model our system as a non-cooperative game, which we
call the RB selection game. The players are the MMTs in
the network and they seek to maximize their individual util-
ities by transmitting on the RBs in the network. In our RB
selection game we have a setK of K MMTs that can transmit
on a set R of R RBs. Each MMT can either transmit or not
transmit on RB r, indicated by

prk :=

{
1 if MMT k transmits on RB r

0 otherwise.
(1)

The action of MMT k is the binary vector

pk = (p1k, . . . , p
R
k ) ∈ Pk = {0, 1}R, (2)
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while the combined actions of the other MMTs are denoted
p−k. The combined action of all MMTs is

p = (pk,p−k) = (p1, . . . ,pK) ∈ P = {0, 1}R×K . (3)

In a game with full-information, each player is able to ob-
serve the actions taken by all other players. The RB selection
game is a partial-information game, where each MMT does
not know the actions of all other MMTs. The only informa-
tion that MMT k has regarding p−k = (p1

−k, . . . ,p
R
−k) is

obtained via a congestion function

ck(p−k) =

(
c1k(p1

−k), . . . , cRk (pR−k)

)
. (4)

Each crk reflects the amount of congestion on RB r faced by
MMT k if it were to transmit on RB r, and depends only on
the other transmissions that occur on RB r (i.e. we assume no
cross-channel interference). The value of crk is given by

crk(pr) = Ark · pr

=
∑
l∈K

Arklp
r
l (5)

where Ar is a symmetric K ×K matrix with entries Arkl ≥ 0
and zeros along the diagonal, and pr = (pr1, . . . , p

r
K). The

matrixAr specifies how much interference MMTs cause each
other on RB r. The symmetry of Ar reflects our assumption
that interference between MMTs is symmetric.

Given crk, MMT k can compute the utility it obtains from
transmitting on RB r via the utility function

urk : R→ R. (6)

We model this channel utility function as a decreasing func-
tion i.e. for all x < y ∈ R

urk(x) > urk(y).

Here, x and y represent different levels of congestion. The
decreasing nature of urk reflects the condition that as conges-
tion levels increase, the utility of an RB decreases. The total
utility experienced by MMT k is then the sum of the utilities
due to each of the RBs it transmits on i.e.

uk(pk,p−k) :=
∑
r:prk=1

urk
(
crk(p−k)

)
. (7)

An ubiquitous example of a function satisfying the above con-
ditions is the channel capacity function given by the Shannon-

Hartley theorem [8] urk(x) = β log2

(
1 + s

σ2+x

)
, where

β, s, σ > 0. Here β is the channel bandwidth, s is the channel
state and x is Gaussian noise with variance σ2.

MMT k has to pay a fixed price πrk ≥ 0 for transmitting
on RB r. The total price paid for a particular action is

πk(pk) :=
∑
r:prk=1

πrk. (8)

We do not assume that MMT’s have a power constraint. In-
stead, the power required for transmission can be factored into
πrk. MMTs thus have to make a trade-off between increasing
uk and decreasing πk. The final objective of MMT k is to
maximize the function

fk = uk − πk. (9)

Assuming the RBs and MMTs are fixed, an RB selection
game is defined by the objective functions fk. We may thus
specify an RB selection game G by just specifying the objec-
tive functions fk, keeping in mind that fk encapsulates both
the utility and price functions

G =
(
{fk}k∈K

)
=
(
{uk − πk}k∈K

)
. (10)

Finally, we may restrict out attention to Gr =
(
{frk}k∈K

)
,

which is the game obtained if RB r is the only RB available
in the network.

3. CONVERGENCE OF BEST-RESPONSE
DYNAMICS

In our RB selection game, the additive nature of the MMTs
utility functions implies that best-response updates take the
following form:

Definition 1 (RB best-response) The best-response of MMT
k to the combined actions of the other MMTs, p−k, is given
by (p1k, . . . , p

R
k ) where prk = 1 if and only if frk (pr−k) > 0.

Since the prices πr are constant, the condition frk (pr−k) =

urk
(
crk(p−k)

)
− πrk > 0 is equivalent to urk

(
crk(p−k)

)
> πrk.

Since urk is a decreasing function, this is the same as

crk(p−k) < urk
−1(πrk), (11)

where urk
−1 is the inverse of urk. The RB best-response up-

date rule coincides with the lazy best-response update rule in
[4]. Written in this way, MMTs do not need to carry out an
exhaustive search over all their possible actions, which may
be prohibitive when R is large.

To prove convergence of RB best-response dynamics, we
first define two common concepts from game theory: Nash
equilibria and ordinal potential games.

Definition 2 A combined action p = (pk,p−k) ∈ P is a
Nash equilibrium if

fk(qk,p−k)− fk(pk,p−k) < 0 (12)

for all qk ∈ Pk and k ∈ K.

Nash equilibria play an important role in game theory because
they are the points at which no player will want to unilaterally
deviate. Any such deviation leads to a decrease in the objec-
tive function of that player. Thus Nash equilibria, if they exist,
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will be fixed points of iterative best-response updates. We will
show that RB best-reponse dynamics will converge to a Nash
equilibrium by defining an ordinal potential function for the
game.

Definition 3 A game G =
(
{fk}k∈K

)
is an ordinal potential

game if there exists a function φ : P → R satisfying

fk(qk,p−k)− fk(p) > 0 ⇐⇒ φ(qk,p−k)− φ(p) > 0
(13)

for all k ∈ K,p ∈ P,qk ∈ Pk. The function φ is called an
ordinal potential function of the game.

In an ordinal potential game, players’ objectives are aligned
with the ordinal potential function in the sense that a player’s
utility function will increase (or decrease) if and only if the
ordinal potential function also increases (or decreases). Fur-
ther, ordinal potential games do not have weak-improvement
cycles, and are guaranteed to have at least one (not necessarily
unique) Nash equilibrium [9]. In particular, the combined ac-
tion that maximizes φ will be a Nash equilibrium. The main
result of this paper is the derivation of an ordinal potential
function for the RB selection game, which is shown in the
following theorem.

Theorem 1 Define the following function for each RB

φr(pr) := −1

2

∑
k,l∈K

Arkl p
r
k p

r
l +

∑
k∈K

urk
−1(πrk) prk, (14)

Then φr is an ordinal potential function for Gr,the RB selec-
tion game restricted to RB r.

Proof We need to prove the following statement for each RB
r:

φr(qrk,p
r
−k)−φr(pr) > 0 ⇐⇒ frk (qrk,p

r
−k)−frk (pr) > 0.

(15)
Suppose prk = 0 and qrk = 1. Note that (14) can be rewritten
as

φr(pr) = −1

2

(
2

∑
k,l:prk,p

r
l =1

Arkl
)

+
∑

k:prk=1

urk
−1(πrk), (16)

so the difference in φr when moving from pr to qr is given
by

φr(qrk,p
r
−k)− φr(pr) = −1

2

(
2
∑
l:prl =1

Arkl
)

+ urk
−1(πrk),

(17)
which is positive if and only if

urk
−1(πrk) >

∑
l:prl =1

Arkl

= crk(p−k). (18)

Applying the decreasing function urk to both sides gives πrk <
urk
(
crk(p−k)

)
and thus frk (pr−k) > 0. �

Corollary 1 The value of φr increases when MMTs itera-
tively carry out RB best-reponse updates on RB r.

Corollary 2 Let Φ =
∑
r∈R φ

r. Then Φ increases when
MMTs iteratively carry out RB best-response updates.

Since there are only a finite number of possible actions, Φ
can only take a finite number of values. The convergence
of iterative best-response dynamics in the RB selection game
follows directly from this result. In fact, Corollary 2 implies
that Φ is a generalized ordinal potential function [7] of G, i.e.

fk(qk,p−k)− fk(p) > 0 =⇒ Φ(qk,p−k)− Φ(p) > 0
(19)

for all k ∈ K,p ∈ P,qk ∈ Pk. This in turn implies that the
RB selection game has the Finite Improvement Property [7].

Note that Theorem 1 depends on he symmetry of Ar, not
on the actual values of Arkl or πrk. This implies that the con-
vergence of the RB selection does not depend on the inter-
ference between players or the price imposed on each RB.
Network managers can thus set prices to meet their own ob-
jectives without worrying about the convergence of the sys-
tem.

It turns out that −φr is analogous to the energy of a con-
figuration in an Ising model from statistical physics or a Hop-
field network [10] from artificial neural networks. Briefly, we
have a set of particles {1, 2, . . . ,K} that may be in one of two
states, −1 or 1. Each particle’s state depends on the states of
the other particles through a symmetric correlation matrixW ,
as well as on an external field θ that is applied to each particle.
The correlation between the states of particles k and l is rep-
resented by the value Wkl. Let x = (x1, . . . , xK) represent
the states of the particles at some point in time. Then the state
of particle k at the next step in time depends on the quantity∑

l

Wklxl − θk, (20)

whereW is a symmetric matrix with zeros along the diagonal.
In a Hopfield network, xk = 1 if

∑
lWklxl − θk > 0. If

particles update their states asynchronously according to this
rule, it can be shown that the energy function

−1

2

∑
k,l

Wk,lxkxl +
∑
k

θkxk (21)

will always decrease. One can interpret the matrix W in the
following way: if Wkl > 0, then the states of particles k and l
are positively correlated. The RB selection game restricted to
a single RB r can be though of as a Hopfield network or Ising
model with matrix W = −Ar. Since the entries of −Ar are
negative, this implies that MMTs are trying to play actions
that are negatively correlated to each other, which agrees with
what intuition tells us would happen when MMTs mutually
interfere. The price scheme is the analogue of the external
field, allowing us to influence the behaviour of MMTs with
appropriate prices.
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(a) Generalized Ordinal Potential Function (Φ)
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Fig. 1. Best-response dynamics under 4 price schemes. Under
best-response updates, the functions in (a) always increase,
but those in (b) and (c) do not.

4. SIMULATIONS

To illustrate our results, we carry out a simulation following
the setup of [1], with 8 MMTs sharing 5 RBs (i.e. K = 8 and
R = 5). The interference matrix Ar is a symmetric random
matrix with entries Arkl ∈ [0, 1], Arkk = 0. The utility func-
tion is the channel capacity function given by the Shannon-
Hartley theorem [8]

urk(x) = βr log2

(
1 +

srk
(σrk)2 + x

)
, (22)

where βrk is the channel bandwidth of RB r, srk is the channel
state of RB r to MMT k and (σrk)2 is the noise variance of
RB r to MMT k. We fix (σrk)2 = 0.1, while randomly choos-
ing the other paramters uniformly over srk ∈ {1, 2, 3, 4}, and
βr ∈ {1, 2, 3}. Our simulation results are averaged over 50
scenarios with varying A, β and s. For each scenario, we im-
posed 4 pricing schemes, ranging from no price at all, to a
high price that discourages transmission. We then compare
the evolution of three values as MMTs carry out RB best-
response updates: a) the value of Φ, b) the total congestion
faced by the MMTs, and c) the total utility of all the MMTs.

From Fig.1(a) we see that Φ always increases with each
iteration, confirming Corollary 2. This is not the case for the
total congestion,

∑
r∈R

∑
k,l∈KA

r
klp

r
kp
r
l , or the total utility∑

k∈K uk. These two other functions thus cannot be used as
generalized ordinal potential functions for the RB selection
game. Note that the moderate price scheme maximizes the
total utility. A network manager seeking to maximize the to-
tal utility would thus choose this price scheme over the other
three.

5. CONCLUSION

In this paper we have modelled network selection in a het-
erogeneous wireless network as an RB selection game. We
have shown that this game is a sum of ordinal potential games
by defining ordinal potential functions that are closely related
to the total congestion experienced in the network. Further,
the convergence of the system is not dependent on the actual
price that is imposed on each RB. Future work could could
consider non-additive utility functions (e.g. power constraints
and cross-channel interference), as well as time-varying chan-
nel conditions, while also making further use of the physical
interpretation of the ordinal potential function as the energy
of a configuration in an Ising model or a Hopfield network to
derive new, non-deterministic algorithms for network selec-
tion.
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