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ABSTRACT
The objective of this research is to modify the clean speech in a way
that it will be more intelligible when it is played in noisy environ-
ment without increasing global signal-to-noise ratio. A new near-end
speech enhancement algorithm is derived in this contribution based
on an extrapolation technique. In this method speech energy is trans-
ferred from high energy regions of the speech signal to low energy
regions by considering soft-sounds/strong-voiced components clas-
sification decisions into account. Variable amplification gain is de-
rived and applied to the classified speech components depending on
their original energy levels. The proposed algorithm does not re-
quire any information about input noise characteristics for near-end
speech enhancement problem.

The derived algorithm is combined with baseline near-end
speech enhancement method as a post processing block for test-
ing overall performance. Significant intelligibility improvements are
observed with the proposed method over unprocessed noisy speech
and considerable improvements are observed with combined method
over recent version of the baseline method.

Index Terms— speech detection, speech intelligibility, near-end
speech enhancement

1. INTRODUCTION

For a decade near-end speech enhancement problem has been ad-
dressed many times in different aspects. When speech communica-
tion takes place in noisy environments, speech is less audible to the
listener because of the additive noise. Often people require to com-
municate with others in crowded public places such as at markets
and train stations. In such situations normally people change their
way of speaking by putting more emphasis on particular phonemes
or part of phonemes in order to make their speech more clear and
intelligible[1]. In telecommunications, it is always advantageous for
the listener if the incoming signal is automatically adjusted to the
current situation where the listener is located in order to increase
the intelligibility. This is referred to as near-end speech enhance-
ment. Recently many near-end speech enhancement methods were
proposed to overcome this problem by assuming input noise char-
acteristics as known. But in reality the noise situations arising in
everyday communication are very different from each other and are
not predictable perfectly.

In recent years, Sauert and Vary addressed the near-end speech
enhancement problem several times and suggested different speech
enhancement approaches for improving the intelligibility of speech
in noise conditions assuming that the input noise is known[2][3] .

In some of the near-end speech enhancement approaches the
power constraint is taken into account for redistributing the speech

energy over time and/or frequency as opposed to increasing the play-
back level of speech which may not be possible anymore due to loud-
speaker limitations or unpleasant play-back levels. Previous research
methods also suggest that selective enhancement of vocalic onsets
and offsets of speech signal can improve the speech intelligibility
for the same overall signal-to-noise ratio[4][5][6].

The average speech spectrum is raised over the average noise
spectrum in order to recover a target signal-to-noise-ratio along with
the dynamic range compression in [7]. All the above mentioned
techniques are mostly developed by assuming input noise conditions
as already known and available. In real time applications, the near-
end speech enhancement methods which depend on the noise char-
acteristics may not be able to estimate noise floor perfectly unless the
additive input noise is also exactly the same as assumed noise. So,
improvisation of speech intelligibility is limited for unknown noise
conditions.

Speech components like bursts, fricatives, vocalic onsets and
offsets are defined as soft-sounds in this paper. A time domain based
noise independent selective soft-sounds enhancement algorithm is
derived in this contribution for near-end speech enhancement (NSE)
applications. Soft-sounds are extracted and enhanced more than
strong-voiced sounds in speech signals because they are low in en-
ergy and are very important for speech identification and discrimina-
tion. In this research an experiment is conducted, in which proposed
noise independent near-end speech enhancement method is added to
different base-line NSE methods as a post-processing block to ob-
serve the possibility of further speech intelligibility improvements.

This paper is organized as follows. Section 2 describes the
proposed NSE system (combination of soft-sounds enhancement
method with base-line NES method) and then explains derived soft-
sounds enhancement algorithm in two steps. First step shows the
process for extracting the soft-sounds from continuous speech sig-
nals. Second step explains how to derive appropriate amplification
gain for each extracted soft speech component. Then, Section 3
presents experimental set-ups and implementation results while sec-
tion 4 concludes and highlights the main perspectives of this work.

2. PROPOSED NEAR-END SPEECH ENHANCEMENT
SYSTEM

In order to improve the near-end speech intelligibility we modify
the speech signal both in frequency and time domain. Fig. 1 shows
the proposed OLFSSE (optimal linear filtered soft-sounds enhance-
ment) speech modification system which is cascade combination of
two sub-systems. The first sub-system is baseline method (opti-
mal linear filter (OLF)) proposed in [8] and the second sub-system
is soft-sounds enhancement (SSE) method explained in subsequent
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sections.
In OLFSSE system speech modification is done by redistribut-

ing the speech energy over frequency by using optimal linear fil-
tering as in [8] and then the soft-sounds are detected in processed
speech signal by using an extrapolation based detector and enhanced
in order to achieve temporal enhancement. The amplification gain
is varied for all detected components based on their original signal
power. And then the total power of the modified signal is normalized
back to the global signal power. The main aim of OLFSSE system is
also to see the possibility of speech intelligibility improvement after
SII (Speech Intelligibility Index) maximization through the optimal
linear filtering in stage-1.

Optimal linear filtering shown in stage-1 of proposed system op-
timizes the intelligibility of speech in noise for near-end listener by
distributing the speech energy over frequency bands such that ap-
proximation of the SII is maximized. In stage-2, a new derived soft-
sounds enhancement algorithm is applied on every processed utter-
ance in stage-1 to enhance the soft sound frames. The soft-sound
speech components detection algorithm will be elucidated in the fol-
lowing sections.

Fig. 1. Proposed OLFSSE system for near-end speech enhancement.

2.1. Soft-Sounds Enhancement (SSE) algorithm

The new soft-sounds detection algorithm is derived based on our
previous work in [9]. In our previous work noisy stop consonants
detection algorithm was implemented and is modified in this contri-
bution to detect the soft-sounds in clean speech. Extrapolation is a
method to extend speech samples in forward direction based on the
present observations. In this technique we assume that there exists a
set of prediction filter coefficients (ak) of order p that would linearly
predict any sample in a given signal perfectly with zero prediction
error i.e.,

sn =

p∑
k=1

aksn−k (1)

There are two main factors to describe how soft-sounds detec-
tion method is different from the stop consonants detection method
published in our previous work. Although we adopt the extrapola-
tion technique from our previous work to detect the soft-sounds, the
detection process and detecting components are quite different com-
pared to stop consonants detection method. In our previous stop con-
sonants detection algorithm we used three series of decisions (deci-
sion tree) for stop consonants detection with tight thresholds in order
to avoid false detections due to the voiced onsets and fricatives. With
soft-sounds detection algorithm we want to locate all soft-sounds (as
defined in section 1) along with the stop consonants in clean and
processed speech. In this contribution we extracted the soft-sound
frames based on the energy difference and prediction gain which are
computed between original frames and extrapolated frames.

Initially, the clean speech signal Splain is segmented into M
frames with frame advance R and frame length N and then the frame

based extrapolation technique is implemented. Every extrapolated
frame is predicted based on the previous frame of the original speech
signal, for more details see [9]. The energy of all original (EO) and
extrapolated (EE) frames are computed as follows,

EOi = xT
i xi; EEi = xT

extrixextri (2)

where xi is the ith speech frame, xextri is the ith extrapolated
speech frame. The prediction gain and energy difference are used
for measuring the success of the prediction. The prediction gain
(PG) and the energy difference (ED) are computed as shown in Eq.
(3) and (4) respectively,

PGi = 10 log10

(
σ2
xi

σ2
ei

)
(3)

where σ2
xi

is the variance of the input clean signal and σ2
εi is

the error variance computed between the clean speech frame and
corresponding extrapolated frame.

EDi = 10 log10(EOi)− 10 log10(EEi) (4)

where EDi is the energy difference of the ith speech frame.

Soft sound frames extraction is done based on the following de-
cision in Eq. (5),

xi =

{
Soft sound frame PGi ≤ τpg and EDi ≥ τed

Strong voiced frame Otherwise

(5)

where τpg and τed are PG and ED thresholds to determine the
decision boundaries. As explained with experimental results in [9],
prediction gain and energy difference are less during onsets and tran-
sients because of sudden rise in energies and noise like behavior in
stops. It is difficult to predict the soft-sound signals based on their
previous frames by using AR(Auto Regressive) filter model due to
the structural and energy difference between them. In order to locate
less predictable speech components (like soft-sounds), thresholds of
the decision parameters shown in Eq. (5) are computed through ex-
periments for the speech database used in this paper for the experi-
ments. Thus, decision parameters are set to τpg = 0 dB and τed = 4
dB because at these values we observed maximum speech ineligibil-
ity improvements over unprocessed speech.

Lets assume I is the vector of size 1 × M which stores the
strong-voiced/ soft-sounds frame decisions in terms of Ii = 0 for
strong-voiced frame and Ii = 1 for soft-sound frame. To enhance
the detected soft-sound frames based on Eq. (5) we need to derive
right enhancement gains for every detected component. Derivation
of variable amplification gain for soft-sounds enhancement will be
explained in the following section.

2.2. Variable amplification gain derivation

If we assume every speech utterance consists of both strong-voiced
and soft-sound components then the total power (PT ) of the speech
signal is sum of both the components in that signal. We can formu-
late it as follows,

PT = PSV + PSS (6)

where PSV is the power related to the strong-voiced (SV) com-
ponents i.e., sum of all SV components power and PSS is the power
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related to the soft-sound (SS) components i.e., sum of all SS com-
ponents power. As SS components are relatively weak sounds and
has less energy, amplification is needed to make them audible. Thus,
in order to increase intelligibility of speech signal the SS compo-
nents are amplified with α factor while the total power constraint is
achieved by β factor.

PT = β2(PSV + α2PSS) (7)

By fixing the global amplification gain factor α of complete
speech utterance we can compute the value of β by keeping total
power constant:

β2 =
PT

(PSV + α2PSS)
(8)

Since all SS components do not have same properties, applying
same amplification gain to all SS components is not a good idea and
may not yield good results. For computing the variable gain for each
detected soft-sound component the following set of equations are
derived.

Let the new amplification gain for every SS frame is denoted by
α̂i. The power values (PSS) of the SS frames are extracted as shown
in Eq. (9).

PSSi = IiPi (9)

where Pi is power of the ith frame.

For getting the variable amplification gain, the actual input
power of SS frame is subtracted from the maximum value and then
normalized by the difference between maximum and minimum val-
ues of SS frames in logarithmic domain.

α̂i =
γ(max

i
(ln(1 + IiPi))− ln(1 + IiPi))

max
i

(ln(1 + IiPi))−min
i

(ln(1 + IiPi))
+A (10)

where γ and A are constant values and are used there to avoid
the zero amplification values. The behavior of amplification gain α̂i

is shown in Fig. 2 along with the clean speech signal and energy
levels of SS frames. The value of α̂i is high when the detected soft
speech component original energy IiPi is low and α̂i is low when
the detected soft speech component original energy IiPi is high. As
shown in Fig. 2, α̂i varies according to the detected signal energy
even within the phoneme. When the soft-sound component frame
has maximum energy, no amplification is applied to that frame be-
cause in that case α̂i = A and A is set to 1 in our experiments.

For simplification, Eq. (10) is modified as follows,

α̂i = (γmi +A) (11)

where mi is

mi =
(max

i
(ln(1 + IiPi))− ln(1 + IiPi))

max
i

(ln(1 + IiPi))−min
i

(ln(1 + IiPi))
(12)
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Fig. 2. Variable gain for soft sounds enhancement at global amplifi-
cation gain α = 3.

According to the problem formulation, the sum of the individ-
ual powers of the SS frames computed with the new amplification
factors α̂i is equal to the total power of the speech soft-sounds com-
puted with global amplification factor α.

M∑
i=1

α̂i
2IiPi = α2PSS (13)

The value of γ is computed by substituting the Eq. (11) in Eq.
(13) ,

M∑
i=1

(γmi +A)2IiPi = α2PSS

For simplicity P̃SS and νi are used instead of α2PSS and IiPi

respectively in the following derivation.

M∑
i=1

(γmi +A)2νi = P̃SS

γ2 + 2γA

∑M
i=1 miνi∑M
i=1 m

2
i νi

+
A2 ∑M

i=1 νi − P̃SS∑M
i=1 m

2
i νi

= 0 (14)

γ value is obtained by solving quadratic equation in Eq. (14) .
The roots of Eq. (14) are shown in Eq. (15) and (16).

γ1 =
−A

∑M
i=1 miνi∑M

i=1 m
2
i νi

+

√√√√[
−A

∑M
i=1 miνi∑M

i=1 m
2
i νi

]2

− c (15)

γ2 =
−A

∑M
i=1 miνi∑M

i=1 m
2
i νi

−

√√√√[
−A

∑M
i=1 miνi∑M

i=1 m
2
i νi

]2

− c (16)

where c =
A2 ∑M

i=1 νi−P̃UV∑M
i=1 m2

i νi

To ensure that amplification gain is positive and also to avoid
information loss by zero amplification, γ value is computed by tak-
ing maximum value among two derived roots γ1, γ2 and 1. Then
the final amplification gain α̂i for every SS frame is computed by
substituting γ value (max(γ1, γ2, 1)) in Eq. (11). Modified speech
signal is reconstructed by using enhanced SS frames and SV frames.
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Output signal power normalization:

Signal power normalization is needed to keep the constraint of global
signal power constant before and after speech modifications. After
soft-sounds enhancement as explained in above section total power
of the modified signal (Sm) is then normalized back to the original
signal (Splain) power as shown in Eq. (17).

Ŝm = Sm

√√√√(∑K
n=1 S

2
plain(n)∑K

n=1 S
2
m(n)

)
(17)

where K is length of the speech signal and n is sample time
index.

Several experiments are conducted for selecting best global am-
plification factor α to achieve maximum averaged SII and maximum
averaged PESQ (perceptual evaluation of speech quality) values over
possible amplification factors (between 1.5 and 4). Among all the
amplification factors (1,5 to 4) α = 3 shows better SII values with
less artifacts. It has been also observed that quality decreases by in-
creasing α value more than 3. Through informal listening we also
observed that audibility of soft-sounds and strong-voiced sounds are
reasonably balanced at α = 3.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed soft-sounds enhancement (PROP-SSE) algorithm de-
rived in Section 2 of this paper was applied on clean speech signals
to improve their intelligibility in noise. As shown in Fig. 1, the
SSE method was also applied on processed signals by OLF method
implemented in [8] and final modified signals are evaluated in exper-
iments with the name PROP-OLFSSE.

The performance of the two proposed algorithms(PROP-SSE
and PROP-OLFSSE) were tested and compared with base-line
method (Cees-2013) proposed in [8] by using 100 randomly se-
lected speech utterances from the TIMIT database [11] at a sam-
pling rate of 16kHz. All 100 clean speech signals were processed by
three methods PROP-SSE, PROP-OLFSSE and Cees-2013 and then
mixed with four different noise types car noise, competing speaker
noise, white noise and non-stationary noise(recorded at matzo fac-
tory)) at SNRs in the range between -20 dB and 20 dB in steps
of 5 dB. The performance of proposed algorithms were evaluated
in terms of the speech intelligibility index predictions as defined in
[10]. The mean SIIs for every algorithm, noise type and SNR are
presented in Fig. 3 along with unprocessed noise signals at fs = 16
kHz.

Experimental results in Fig. 3 shows that PROP-SSE method
exhibit higher ineligibility values than compared to unprocessed
speech for all noise types and SNRs that means by enhancing soft-
sounds we can improve the speech ineligibility. The SII results of
PROP-OLFSSE method is not only showing that they are better than
base-line method in all conditions but also revealing that the speech
intelligibility improvements are still possible after SII maximiza-
tion through baseline method. Another observation is that baseline
method performance is not disturbed by adding the post process-
ing method in any noise case and at any SNR level. From these
results we can also conclude that the soft-sounds are important for
speech intelligibility. Possible reasons for achieving higher SII val-
ues with proposed PROP-OLFSSE method compared that of base-
line method are that PROP-OLFSSE is independent of input noise
characteristics and having both spectral and temporal enhancement
features. When near-end speech enhancement methods which de-
pend on input noise characteristics fail to estimate noise floor accu-

rately in any case, adding noise independent post processing method
to them will improve the speech intelligibility even at high SNRs and
compensates the noise estimation errors.
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Fig. 3. Speech Intelligibility Index (SII) results for the proposed
method (PROP-SSE), combined method (PROP-OLFSSE), baseline
method (Cees-2013) and unprocessed noisy speech (UN).

Through informal listening it has been observed that speech
understanding in extreme noise conditions with proposed PROP-
OLFSSE algorithm is better distinguishable than with other methods
discussed in this experiment. In critical applications like near-end
speech enhancement, every small SII index improvement is desir-
able and makes difference in speech understanding for normal hear-
ing listeners.

4. CONCLUSION

In this contribution, a new time-domain based noise independent
soft-sounds enhancement algorithm was proposed to improve the in-
telligibility of speech in noise for the near-end listeners. This was
accomplished by selective enhancement of speech components that
are important for speech intelligibility. Experimental results of SSE
method shows intelligibility improvements over unprocessed noisy
speech. Moreover, a new near-end speech enhancement system is
proposed by cascading soft-sounds enhancement method with cor-
rected baseline method to achieve speech intelligibility improve-
ments during unknown noise conditions and to compensate noise
estimation errors. The proposed OLFSSE system shows better in-
telligibility improvements over unprocessed noisy speech and con-
siderable improvements over recent near-end speech enhancement
method for all SNRs and noise types.
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