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ABSTRACT
We propose a novel bandwidth expansion algorithm for extending
narrowband speech signal to wideband by exploiting segment ex-
amples pre-stored in a speaker independent database. Both narrow-
band and wideband representation of speech signals are pre-stored
in the corpus and they are dynamically chopped into variable length
segments. Narrowband segments are used dynamically to explain
a given narrowband input sentence while the wideband expanded
version of the input sentence is constructed correspondingly. The
matching process in the narrowband favors a longer segment patch
by the chosen Maximum A Posterior (MAP) criterion. As a result,
the multiple choices in matching process are significantly reduced
with the MAP criterion in decoding. The approach is further gener-
alized to deal with noise corrupted narrowband input signals and the
well-known Vector Taylor Series (VTS) noise adaptation algorithm
is incorporated into the matching and bandwidth expansion process.
A series of experiments is performed to validate the approach on
both clean and noise corrupted narrowband speech where both car
noise and babble noise corrupted samples are tested.

Index Terms— speech bandwidth expansion, maximum a pos-
terior, corpus-model, noise reduction, vector Taylor series

1. INTRODUCTION

Quality and intelligibility of narrowband telephone speech can be
improved by artificial bandwidth expansion (BWE), which extends
the speech bandwidth using information available in the narrowband
speech signal. The derivation of high-frequency components from
the lower-band frequencies of speech signals is a non-trivial prob-
lem because the mutual information between the lower-band and
upper-band frequencies is relatively low within any frame of speech
features [1]. In [2], it was shown that the low-band and high-band
relationship is an one-to-many mapping problem.

Various methods have been proposed to tackle the problem and
extend the narrowband speech to wideband one. Most of BWE al-
gorithms in literature, theoretically, are based on the source-filter
speech production model, and the techniques to estimate the wide-
band spectral envelopes have been developed in many literatures
using various methods [3–6]. Since statistical algorithms, such as
Gaussian mixture model (GMM) and hidden Markov model (HMM),
are flexible in modeling the statistics of speech signal and identify
the high-band parameters with a soft decision scheme, they showed
better performance than other simpler statistical methods, e.g., code-
book or linear mapping [7, 8]. However, phonetic models used in
those systems were only capable of representing the neighboring
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phonetic contexts, thus, hissing and whistling artifacts still remained
as a common problem.

Several approaches to explicitly utilize cross-frame correlations
in longer units have been proposed. In [9], an extension of GMM
method by using HMM on a block basis was proposed, where the
speech block was either one word or a sequence of words in narrow-
band utterance. Bansal exploited cross-frame contextual dependen-
cies rather than spectral vectors within a frame using non-negative
matrix factorization, where sequences of wideband magnitude spec-
tral vectors are represented as linear combinations of non-negative
bases [10]. The bases were several frames wide and learnt from a
target speaker’s brief recording of both wideband and narrowband
speech. In [11], an memory-based approximation of GMM was for-
mulated for BWE.

In this paper, we propose a new bandwidth expansion method
which exploits a Maximum A Posterior (MAP)-based reconstruc-
tion approach. The estimate of wideband spectrum is formed by
retrieving the longest matching segments from a pre-stored wide-
band speech corpus. Both narrowband and wideband representa-
tion of speech signals are pre-stored in the corpus and they are used
for matching and reconstruction, respectively, in a synchronous way.
Given any new narrowband signal, the narrowband longest segments
that best explain the input signal are estimated. Accordingly, wide-
band extended version of the input sentence is derived by combining
the corresponding segment examples stored in the wideband corpus.
Identifying the longest matching segments is realized by the cho-
sen MAP criterion, which necessarily favors longer matching seg-
ments [12]. With the MAP criterion, multiple choices in matching
process are significantly reduced and the defect of little amount of
information to identify high-frequency components within a frame
is compensated with more contextual dependencies. This new ap-
proach to modeling and segment matching is based on the work
in [12]. We generalize the idea to estimating missing part of speech,
i.e., high-frequency components, given the narrowband speech sig-
nal. Throughout the paper, we use the term corpus-model to describe
a set of models trained on the parallelized wideband and narrowband
speech databases on which the segment matching and bandwidth ex-
pansion are performed with the MAP criterion.

In the latter part of this study, the approach is further generalized
to deal with noise corrupted narrowband input signals, where the
well-known Vector Taylor Series (VTS) [13] noise adaptation algo-
rithm is incorporated into the matching process. The work presented
here tightly integrates the noise reduction and bandwidth expansion
process using a single shared corpus-model. In Section 2, we de-
scribe overall process of the proposed BWE framework. Section 3
generalizes the proposed technique to the noise corrupted speech.
Then, a series of experiments on clean and noise corrupted narrow-
band speech is followed in Section 4 to validate our approach.
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Fig. 1. Proposed speech bandwidth expansion framework

2. THE PROPOSED SPEECH BANDWIDTH EXPANSION
FRAMEWORK

In this section, the overall BWE process is presented mainly with
the following three steps: (i) corpus-model training (ii) matching
segment identification (iii) wideband speech reconstruction. Fig. 1
shows the block diagram of the proposed BWE framework. The
noise adaptation block is presented in Section 3.

2.1. Modeling spectral and temporal dynamics of narrowband
speech

The first step of the proposed BWE method starts from construct-
ing a corpus-model [12] that can represent exact and fine structure
of spectral and temporal dynamics of speech using a parallel nar-
rowband and wideband training data. The model consists of three
components, {G(n),M (n), A(w)}, where the notations (n) and (w)
represents the bandwidth of speech signals on which each model
is trained. In this work, for simplicity, the wideband bandwidth is
defined as meaning the 8kHz full bandwidth (i.e.,0-8kHz) and nar-
rowband the original 4kHz bandwidth (i.e., 0-4kHz).

Let s = {si : i = 1, 2, ..., Is} be the complete set of narrow-
band training features with Is frames and si be the feature vector at
time frame i. The first model denoted byG(n) is a Gaussian mixture
model (GMM) trained on s such as

G(n) =

K∑
k=1

λkN(s;µk,Σk), (1)

where N() is a Gaussian, λk the mixture weights, and µk and Σk

the mean and covariance of the Gaussians, respectively. Then, based
upon G(n), it is possible to represent the complete training set s by
identifying the Gaussian component in G(n) that maximizes likeli-
hood of the frame. This results in a time sequence of maximum-
likelihood Gaussian components such as:

M (n) = {mi : i = 1, 2, ..., Is}, (2)

where mi is a kernel index of a Gaussian in G(n) that produces
the maximum likelihood for the segment si. This sequence model
M (n) captures long range of temporal dynamics of speech signals.
Technically, any segment of any length in the training sentences can
be modeled. Lastly, we generate a template model, or dictionary,
A(w) = {ai : i = 1, 2, ..., Is}, where ai is the clean wideband
magnitude spectrum of ith frame in corpus. These wideband ver-
sion segments in A(w) are later fetched in reconstruction phase in a
way that the paralleled narrowband speech segments best explain the
given narrowband input sentence.

2.2. Finding the best-matching segment examples in the nar-
rowband

Given the model G(n) and M (n) trained in the manner described
above, in the test phase, we identify segment examples from the
narrowband corpus that most likely matches the input narrowband
speech. Then, the wideband extended version of the input sentence
is derived by retrieving the corresponding segment examples from
the wideband corpus. In this subsection, we describe the method
to find the segments of the narrowband training data which best ex-
plains the input speech sentence. Notice that the segment matching
process is executed in the narrowband.

Let yt:t+τ be a test segment taken from time frame t to t + τ

of the sentence y = {yt : t = 1, 2, ..., T} and M (n)
u:u+τ = {mi :

i = u, u+ 1, ..., u+ τ} the sequence of Gaussian component mod-
eling consecutive frames from u to u + τ in the training dataset s.
We measure the similarity between the two segments by using the
posterior probability of the corpus segment M (n)

u:u+τ given the test
segment yt:t+τ such as:

M
(n)
t,u:u+τ = arg max

τ
p(Mu:u+τ |yt:t+τ ), (3)

p(M
(n)
u:u+τ |yt:t+τ ) =

p(yt:t+τ |M (n)
u:u+τ )p(M

(n)
u:u+τ )

p(yt:t+τ )
. (4)

Assuming that all the training patterns seen in the training dataset oc-
cur with an equal probability in the testing condition - an equal prior
probability of p(M (n)

u:u+τ ), the numerator term in (4) becomes the
likelihood of the test segment yt:t+τ associated with the segment of
training dataset modeled with M (n)

u:u+τ . The likelihood is calculated
as:

p(yt:t+τ |M (n)
u:u+τ ) =

τ∏
ε=0

g(yt+ε|m(n)
u+ε), (5)

where the independence between adjacent frames is assumed. The
denominator can be calculated as the summation of p(yt:t+τ |M (n)

u:u+τ )

over all the possible pattern of M (n)
u:u+τ stored in the model M (n).

As shown in [12], an important characteristics of the posterior
probability p(M

(n)
u:u+τ |yt:t+τ ) is that it favors the continuity of

the matching segments, in terms of giving larger values for longer
matching between yt:t+τ and Mu:u+τ . Thus, with the matching
process based on the chosen MAP criterion, the multiple choices in
matching process are significantly reduced. The identified longest
segment as a whole matched unit includes rich contextual dependen-
cies across frames. This alleviates one-to-many mapping problem
in typical BWE problem so that the hissing or whistling artifacts are
reduced.

2.3. Forming the estimate of the wideband spectrum

Suppose now we found the longest matching segmentsM (n)
t,u:u+τmax

to the given narrowband speech yt:t+τmax at all t. Then, we form an
estimate of the wideband expanded version of input speech spectra
as follows:

Ŝ(w)
ε =

∑
tA

(w)(utε)p(M
(n)
t,u:u+τmax

|yt:t+τmax)∑
tM

(n)
t,u:u+τmax

|yt:t+τmax

, (6)

where A(w)(utε) represents a prototype magnitude spectrum asso-
ciated with the frame of wideband training dataset corresponding
to M (n)

t,u:u+τmax
, where utε indicates the most-likely time path u =

{u, u+1, ..., u+τmax} at time t. The estimate of the wideband mag-
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nitude spectrum for time frame ε is obtained by taking all the adja-
cent matched segments that contain ε and, then, averagingA(w)(utε)
over t. In the averaging, frames within the same segments share
a common weight, which is the posterior probability of the seg-
ment. Notice that each frame is estimated through identification of
the longest matching segment, then each wideband magnitude esti-
mate is smoothed over successive longest matching segments. This
improves robustness to imperfect segment matching, i.e., between
observation segments and narrowband corpus segments.

3. SPEECH BANDWIDTH EXPANSION
IN NOISY ENVIRONMENTS

In this section, we describe how the BWE framework described in
the previous section can be generalized to the noise corrupted obser-
vation. To compensate the statistical mismatch between the corpus-
model which is trained on a clean speech corpus and the input noisy
observation, the well-known Vector Taylor Series (VTS) [13] noise
adaptation algorithm is incorporated into the matching process. The
work presented here tightly integrates the noise reduction and band-
width expansion process using the single shared corpus-model.

3.1. An overview of environment model adaptation using vector
Taylor series

Let us assume that in the time domain the clean speech x[m] is cor-
rupted by additive noise n[m] and channel distortion h[m]:

y[m] = x[m] ∗ h[m] + n[m], (7)

where y[m] is the corrupted speech signal. In the mel-frequency
cepstral coefficient (MFCC) domain, this is equivalent to

y = x + h + C log
(
1 + exp

(
C−1 (n− x− h)

))
, (8)

where C represents the discrete consign transform (DCT) matrix and
y, x, h, n the MFCC vectors corresponding to distorted speech,
clean speech, channel, and noise, respectively. It is assumed that
x, h, n are statistically independent and Gaussian with means µx,
µh and µn and covariance matrices Σx, Σh and Σn, respectively.
The Jacobian of y in (7) with respect to x, h and n evaluated at
µ = µn − µx − µh can be expressed as

∂y

∂x

∣∣∣∣
(µx,µh,µn)

=
∂y

∂h

∣∣∣∣
(µx,µh,µn)

= A,

∂y

∂n

∣∣∣∣
(µx,µh,µn)

= I−A = F,

(9)

where

A = C · diag
(

1

1 + exp (C−1 (µx − µh − µn))

)
·C−1, (10)

and diag(·) in (10) represents the diagonal matrix whose elements
equal to the value of the vector in the argument. Then, the nonlin-
ear equation in (8) can be approximated by using a first order VTS
expansion around (µx, µh, µn) as follows:

y ≈ µx−µh−g+A (x− µx)+A (h− µh)+F (n− µn) , (11)

where

g = C log
(
1 + exp

(
C−1 (µx − µh − µn)

))
. (12)

By taking the expectation of (11), the mean of y, µy , and its covari-
ance matrix Σy can be obtained as

µy ≈ µx + µy + g (µn − µx − µh) , (13)

Σy ≈ AΣxA
T + AΣhA

T + FΣnFT . (14)

3.2. Integrating BWE with environment adaptation

Given the input narrowband noisy speech, the modelG(n) estimated
from clean training data cannot provide the proper a prior to the
matching process. Thus, to adapt the model to the target noisy envi-
ronment, we introduce the VTS model adaptation scheme described
in the previous section to the matching process. The updated model
Ĝ(n) to the target environment is estimated as follows:

Ĝ(n) =

K∑
k=1

λkN(s; µ̂k, Σ̂k), (15)

where µ̂yk ≈ µxk + µyk + gk (µn − µxk − µhk ). A single Gaus-
sian is assumed for the noise model. Assuming x and n are inde-
pendent, and given the noise covariance Σk on clean training data,
the covariance matrix of kth component adapted to the target en-
vironment is computed as Σ̂yk ≈ AkΣxkAT

k + AkΣhkAT
k +

FkΣnFTk . The sequence model M (n), which defines the tempo-
ral dynamics in training corpus, is not changed so that it enables
to find the corresponding speech segments in clean training corpus
given the noise corrupted speech. Notice that the posterior proba-
bility p(M (n)

u:u+τ |yt:t+τ ) given in (4) is now calculated based upon
Ĝ(n), which is adapted by the noise statistics estimated from each
test utterance. Finally, A(w) is referred to fetch the corresponding
spectrum patches which are stored in forms of prototype clean and
wideband magnitude spectrum.

4. EXPERIMENTS AND ANALYSIS

To test the effectiveness of the proposed BWE algorithm, we per-
formed a series of experiments on clean and noise-corrupted nar-
rowband speech. To train the corpus-model, we utilized the training
set from the TIMIT database [14]. To create a parallel narrowband
corpus, the speech was downsampled to 8 kHz and filtered according
to the G.712 telephony channel specification. The training data for
the GMM G(n) consists of 1088 sentences produced by 136 speak-
ers. Narrowband features were created by extracting 42-dim log mel
spectral vectors from the power spectrum, and then converting these
to 40-dim cepstra, including c0. We used feature vectors with higher
dimensionality compared to the one typically used for speech recog-
nition in order to retain more detail of both the spectral envelope and
harmonic components. The narrowband cepstra were used to train
a GMM G(n) with 4096 Gaussian components using conventional
expectation and maximization scheme. The sequence model M (n)

was trained with the training data size Is = 338, 546.
To evaluate the proposed BWE algorithm on noisy speech, the

test narrowband speech was mixed with samples of noise from Noi-
seX92 corpus [15] using FaNT [16], which filters speech data with a
frequency characteristic as defined by ITU for telephone equipment,
e.g., G.712 and/or adds noise to speech recordings at a desired SNR.
Car and babble noise were used for evaluation with SNRs between
0 and 25 dB with 5 dB intervals. When VTS adaptation was per-
formed, the noise model parameters were estimated using the first
and last 10 frames, 20 frames in total, of each utterance.
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Fig. 2. Spectrum comparison on clean test data: (a) original wide-
band speech, (b) clean narrowband speech, (c) extended wideband
speech

Fig. 3. Spectrum comparison on noisy test data: (a) original wide-
band speech, (b) noisy narrowband speech (car noise with 5dB
SNR), (c) extended wideband speech.

We first evaluated the proposed BWE algorithm on clean nar-
rowband speech. A test corpus of telephone speech was created
from TIMIT female core test set, which consists of 64 sentences pro-
duced by 8 speakers. These utterances were converted to narrowband
speech in the manner describe above. Fig. 2 shows an example of re-
constructed wideband speech compared to the observed narrowband
speech and original wideband speech. Though differences in test
data make direct comparison difficult, the performance of the pro-
posed BWE algorithm on clean speech is comparable to that of other
recently proposed BWE algorithms in the literature [9, 11]. In par-
ticular, compared to the previous studies in which the largest errors
were found in sibilant sounds or other fricatives [17], the proposed
approach had little degradation on those classes. We hypothesize that
identifying the matching criterion based on long-range speech dy-
namics involves more contextual dependencies, thus, compensates
the defect of little amount of information available in lower-band
frequencies. Fig. 3 shows an example of BWE given the noisy
narrowband observation. The noise statistics estimated in each test
utterance were used to update the pre-trained model G(n) in test
phase. Notice that the system tightly integrates the noise reduction
and bandwidth extension process in a unified framework, where the
output spectrum is reproduced using the clean and wideband magni-
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Fig. 4. Spectral distortion of the extended high frequency spectrum
vs. SNR obtained from noise-corrupted narrowband speech.

tude spectrum segments stored in a speech corpus.
To further validate the system on noisy observation, log-spectral

distance (LSD) between original and estimated wideband speech
was measured against various SNRs. The LSD was calculated from
FFT power spectra using the formula

LSDi =

√√√√ 1

K

K∑
k=1

[
10log10

Pi(k)

P̂i(k)

]2
, (16)

where LSDi is the spectral distortion of frame i, Pi is the power
spectrum of the ground-truth clean wideband at i-th frame, and
P̂i(k) is the power spectrum of reconstructed wideband speech us-
ing the proposed BWE algorithm. K is the number of FFT bins
corresponding to wideband frequency range. Fig. 4 shows the
results using car and babble noise, which has relatively stationary
and non-stationary characteristics, respectively. When we apply
the corpus-model based BWE without integrating VTS scheme, the
noise corrupted narrowband speech induced large errors in matching
process. This resulted in large LSD between the estimated wideband
spectrum and the original one. The additional noise compensation
process, i.e., VTS model adaptation, mitigated the degradation on
both car and babble noise corrupted speech signals. Since the car
noise is relatively more stationary than the babble noise, it took
more advantage from VTS compensation. On the clean narrowband
speech, applying the noise adaptation scheme resulted in a negligible
degradation in performance.

5. CONCLUSION

In this study, a new algorithm of speech bandwidth expansion
was proposed based upon a recently proposed corpus-model based
speech reconstruction algorithm. In contrast to memoryless decod-
ing or HMM-based estimation with additional information from
adjacent frames, the proposed method tried to exploit the long-
range, up to a sentence length, speech dynamics to synthesize the
wideband speech. It was realized by maximizing the posterior prob-
ability in the matching process with segment examples pre-stored in
a speaker independent database. The approach was generalized to
noise corrupted narrowband speech input and Vector Taylor Series
(VTS) was incorporated to combine bandwidth expansion with noise
reduction in a unified framework. Both clean and noise corrupted
narrowband speech signals were tested and the feasibility of the
proposed algorithm was verified.
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