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ABSTRACT

During the transition to wideband speech telephony, artificial band-

width extension (ABE) could help to preserve customer satisfaction

by enhancing speech quality in case of narrowband (NB) calls. How-

ever, the assessment of speech quality for ABE systems is still an

open question. In the literature, instrumental measures are often

used to judge the quality of ABE solutions. When subjective lis-

tening tests are considered, they most often use a comparison cate-

gory rating (CCR) scale and, more rarely, an absolute category rating

(ACR) scale. This paper investigates the relevance of instrumental

and subjective assessment methods for ABE systems. An ACR and

a CCR test are organized. Their results are compared and discussed.

Discrepancies between these two tests open the discussion for the

design of a proper subjective listening test for ABE systems. Some

instrumental measures are also evaluated. A poor correlation be-

tween these measures and the subjective results is observed.

Index Terms— speech quality assessment, bandwidth extension

1. INTRODUCTION

Despite upcoming mobile telephone speech services offering a wide-

band (WB) frequency range of 0.05 . . . 7.0 kHz, such as HD Voice

[1, 2], most telephone calls are still narrowband (NB) providing a

speech bandwidth < 4.0 kHz. In order to establish a WB call, both

conversational partners need to have WB-capable terminals and be

located in WB-capable cells of the same network provider. Other-

wise, the call falls back into a NB mode, which will evoke customer

dissatisfaction [3]. During the transition phase from NB to WB tele-

phone speech services, artificial bandwidth extension (ABE) could

serve as fall-back solution by recovering absent frequency compo-

nents [4, 5]. Some ABE schemes perform not only an extension to

the upper band, but also to low frequencies, however, this typically

comes along with severe artifacts [6]. Furthermore, loudspeakers of

small devices are hardly able to reproduce low frequencies in speak-

erphone mode anyway. This paper therefore focuses on those ABE

approaches that only perform a high-band extension, such as [7].

Due to the lack of signal components in the high band, the in-

telligibility of NB telephone speech is severely reduced. Early ex-

periments on meaningless syllables revealed a reduction of syllable

articulation from 98 % to 90 %, when decreasing the upper cut-off

frequency from 7 kHz to 3.4 kHz [8]. Particularly fricatives, such as

/s/ and /z/, containing most of their energy parts at high frequencies,

suffer from this [9]. Hence, most ABE approaches have problems to

identify and extend them correctly [4]. Audible artifacts are the con-

sequence [10]. By means of a phoneme-specific codebook design
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according to [11], the NB speech intelligibility of critical fricatives

was considerably improved in [12]. Particularly hearing-impaired

persons could benefit from that, as reported in [13, 14].

Bandwidth limitation also degrades speech quality. According

to [15], WB speech reveals a mean opinion score (MOS) of 4.5, rep-

resenting a speech quality between good and excellent, whereas NB

speech attains only a fair speech quality of 3.2 MOS points. The

ability of ABE to improve NB speech quality can be investigated

by instrumental measures or subjective listening tests. For instru-

mental evaluation, distance measures as well as methods predict-

ing the overall quality or quality dimensions are commonly applied,

while subjective evaluations are usually obtained by listening-only

and conversational tests [5, Sec. 6]. Instrumental assessments have

the advantage of saving time and costs, but at the expense of an inac-

curate prediction for ABE algorithms [16]. Möller et al. recently ex-

amined different ABE schemes via both instrumental and subjective

speech quality assessment [17]. Among the instrumental measures,

the ITU-T-recommended WB extension to perceptual evaluation of

speech quality (WB-PESQ) [18, 19] attained the highest correlation

with an absolute category rating (ACR) listening test [20, Annex B].

It even performed slightly better than its new successor perceptual

objective listening quality assessment (POLQA) [21]. However, all

instrumental measures revealed rank order problems [16]. Further-

more, none of the ABE methods was found to significantly improve

NB speech quality. To our knowledge, the only significant speech

quality improvement of ABE over NB obtained in an ACR test until

now was reported in [22], showing a MOS gain of 0.25 points, how-

ever, no speech codecs were applied to the employed speech data.

In this paper, coded speech combined with different ABE imple-

mentations is assessed simulating real telephony conditions. The in-

strumental assessment is based on WB-PESQ and POLQA. For sub-

jective evaluation, the best ABE candidates resulting from an ACR

test are further evaluated by a comparison category rating (CCR) test

[20, Annex E]. The results obtained from absolute and comparative

rating scales are discussed, as well as the correlation between instru-

mental and subjective speech quality assessment.

The remainder of this paper is organized as follows: Sec. 2 intro-

duces the ABE systems being investigated. After having described

the setup of the performed subjective listening tests in Sec. 3, Sec.

4 discusses their results and compares them with those obtained by

instrumental measures. Finally, conclusions are drawn in Sec. 5.

2. ABE SYSTEMS UNDER TEST

Two ABE systems have been employed for speech quality assess-

ment. On the one hand, Section 2.1 briefly describes a state-of-the-

art ABE largely following [4]. On the other hand, a phonetically

motivated ABE built on the basis of [11] is presented in Section 2.2.
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2.1. Baseline ABE System

The baseline ABE approach [4] operates as follows. As proposed in

[4, Sec. 5.3.5], the following static features are extracted from the

NB input speech frames: A gradient index, local kurtosis, normed

relative frame energy, spectral centroid, zero crossing rate, and 10
auto-correlation coefficients. To save complexity of the statistical

model, a linear discriminant analysis (LDA) is performed. It re-

duces the dimension of the feature vectors from 15 to 5 in case of

using static features only, and from 45 to 10 in case of using first

and second order dynamic features in addition. The elements of the

LDA-transformed feature vectors are largely mutually uncorrelated.

Hence, Gaussian mixture models with diagonal covariance matrices

are trained via the expectation maximization algorithm to model the

state observation probability density functions. A first-order hidden

Markov model (HMM) defines 32 states that are uniquely related

to pre-trained cepstral codebook vectors representing spectral en-

velopes of the upper frequency band. The vector quantizer codebook

is trained by the Linde-Buzo-Gray algorithm. Due to real-time re-

quirements, state a-posteriori probabilities are computed via the for-

ward recursion [4, Sec. 6.4.1]. They are used to weight the codebook

vectors in order to obtain a minimum mean square error estimation of

the upper frequency band. After WB power spectrum assembly and

inverse discrete Fourier transform, 16-order WB linear prediction

analysis and synthesis filters are obtained from a Levinson-Durbin

recursion. They are applied to the interpolated NB speech frames

to remove and synthesize the estimated spectral shape caused by the

human vocal tract, respectively. In between, the resulting NB resid-

ual is extended by spectral translation with a fixed modulation fre-

quency of 4 kHz to estimate the excitation signal at the human vocal

cords [4, Sec. 3.3.2].

We decided to implement three baseline ABE versions that

mainly vary in the frame structure and feature extraction:

• The first version denoted by ABE1a does without frame over-

lap by applying a rectangular window with a frame shift of

20 ms. Hence, there is no look-back or look-ahead informa-

tion available. Furthermore, only static features are taken into

account.

• The second version ABE1b slightly differs from ABE1a in

the training process by applying a Blackman window for the

computation of the cepstral codebook vectors via selective

linear prediction (SLP), as proposed in [4, Sec. 4.1.2]1.

• In contrast to ABE1a and ABE1b, the third version ABE1c

makes use of 50% symmetrically overlapping frames with

a frame shift of 10 ms and Blackman windowing. Addi-

tionally, it computes first and second order dynamic features

based on the static ones. Due to real-time requirements, how-

ever, the computation of the ∆- and ∆∆-features considers

only one frame algorithmic delay [12].

2.2. Phonetically Motivated ABE System

A second ABE scheme is based on the baseline ABE implementation

ABE1c in Sec. 2.1. According to this, it uses frame overlap and

dynamic features, however, it varies in other parts of the algorithm.

In the ABE training process, the cepstral vectors are computed

by means of a modified SLP technique that has also access to the pre-

processed NB telephone speech signal in addition to the WB speech

signal. In contrast to [4, Sec. 4.1.2], this provides a better match to

1Please note that we decided to consistently use Blackman windowing for
the base-band gain factor computation in [4, Sec. 6.1.2], too.

the base-band gain factor computation in [4, Sec. 6.1.2]. Inspired by

the phoneme-specific codebook training in [11, Sec. 4.1.2], 8 HMM

states are purely trained on the phonemes /s/ and /z/, while the re-

maining 16 HMM states are dedicated to the other speech sounds.

Different from [11], in order to find the 8 most individual represen-

tatives of /s/ and /z/, the cepstral distance between the mean and the

64 preliminary centroids is computed by omitting the zeroth cepstral

coefficients. Thus, the spectral shape is taken more into account as

compared to the absolute energy. Due to the overrepresentation of

/s/ and /z/ in our codebook related to their normal appearance within

speech, the HMM tends to stay in the /s/- and /z/-states provoking

temporally smeared offsets. We therefore slightly increased the pre-

trained joint state probabilities for transitions from these states to the

remaining ones. To allow in general more transitions from one state

to another, the main diagonal of the joint state probability matrix

was further decreased. Moreover, zeros in the joint state probability

matrix due to insufficient training data were smoothed out.

In the ABE test process, we applied a spectral folding technique

for the extension of the excitation signal, as proposed in [13]. The

modulation by means of a cosine function sampled at integer mul-

tiples of the Nyquist frequency produces a factor (−1)n alternat-

ing with sample index n [4, Sec. 3.3.1]. The resulting upper fre-

quency band of the residual is attenuated by two weights. On the

one hand, a fixed weight controls the upper-band energy of the ABE.

On the other hand, artifacts during noisy speech pauses are reduced

by means of an adaptive weight driven by a three-state speech pause

detection (SPD) according to [23] (in order to make soft instead of

hard decisions, the SPD has been slightly modified). Furthermore,

the extension of speech sounds that tend to be degraded by ABE is

adaptively suppressed via a pre-trained phonetic classifier. To further

control the upper cut-off frequency of the ABE, a lowpass post-filter

can be applied in steps of about 0.5 kHz.

We finally selected the following ABE versions by varying the

overall aggressiveness of the extension via the fixed upper-band at-

tenuation weight and the upper cut-off frequency of the post-filter:

• The first and most aggressive ABE version ABE2A includes

3 dB attenuation and a cut-off frequency of about 6.8 kHz.

• The second ABE version ABE2B involves an attenuation of

6 dB and about 6.3 kHz cut-off frequency.

• The third and most conservative ABE version ABE2C implies

9 dB attenuation and a cut-off frequency of about 5.8 kHz.

3. SUBJECTIVE LISTENING TESTS

For speech quality assessment of the ABE systems in Sec. 2 we per-

formed both ACR and CCR listening tests. Sec. 3.1 first explains the

preprocessing of the employed speech data. The ACR and CCR test

setups are then described in Sec. 3.2 and 3.3, respectively.

3.1. Data Preprocessing

The employed speech data was taken from two female and two male

German speakers of the well-known, multi-lingual NTT-AT database

for telephonometry [24]. Each speaker provided four utterances of

about 8 sec. For each utterance, 22 variants were preprocessed:

Seven NB conditions, six ABE conditions, and nine WB conditions.

The NB conditions were derived from the original, 16 kHz-

sampled speech data by bandpass-filtering to a range of about

0.2 . . . 3.5 kHz via the MSIN highpass and FLAT1 lowpass filters,

as specified by the ITU-T in [25], scaling to an active speech level

of −26 dBov according to [26], and decimation to a sampling rate
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of 8 kHz. Subsequently, six of the NB conditions were generated by

using the modulated noise reference unit (MNRU) [27] with speech

to modulated noise power ratios of 6 dB, 12 dB, 18 dB, 24 dB,

30 dB, and ∞ dB (clean). The last NB condition was obtained

by applying the adaptive multirate narrowband (AMR-NB) speech

codec [28] at the bitrate 12.2 kbps. All NB conditions were finally

interpolated to 16 kHz corresponding to the sampling rate of the

ABE and WB conditions.

The AMR-NB coded files sampled at 8 kHz served as input for

our ABE versions in Sec. 2 (i.e., ABE1a-c and ABE2A-C) to create

the six ABE conditions. In contrast, the WB conditions were derived

from the original, 16 kHz-sampled speech data by transmitter-sided

P.341 filtering to a range of about 0.05 . . . 7.0 kHz according to [29]

and scaling to an active speech level of −26 dBov [26]. The adap-

tive multirate wideband (AMR-WB) speech codec [30] was applied

at the bitrates 8.85 kbps, 12.65 kbps, and 23.85 kbps for three WB

conditions. The remaining six WB conditions were generated by

using MNRU [27] with speech to modulated noise power ratios of

∞ dB (clean), 45 dB, 35 dB, 25 dB, 15 dB, and 5 dB.

3.2. ACR Test Setup

We performed a formal ACR listening test largely following [20,

Annex B], being supported by 7 female and 17 male naı̈ve German

listeners without known hearing impairment. The subjects were ac-

quired in student courses and compensated for their participation

with a service charge. After having split them into three listening

panels, each listening panel was further divided into two groups of

four listeners. Using a standard laptop PC with an external Roland

UA-1010 sound card the test files were diotically presented to each

group in a quiet room over four Philips SHP-8900 equalized

headphones at a sound pressure level of 73 dB.

One utterance per speaker was spent for a preliminary familiar-

ization phase that comprised 16 files in total. The remaining utter-

ances were used in the main test, which provided 88 files. For each

listening panel a disjoint set of different test files was presented in

random order. The files were randomly selected under the follow-

ing constraint: Each set should contain all conditions for two female

and two male varying utterances, so that every file was selected once

over the whole listening test. Note that the speech codecs and ABE

versions were applied in order to simulate different telephone speech

conditions, whereas the MNRU conditions (and some AMR bitrates)

mainly served as reference anchors to exploit the dynamic range of

the absolute rating scale in MOS from 1 (bad) to 5 (excellent).

3.3. CCR Test Setup

After having evaluated the ACR results, the best candidate of each

ABE system was compared to the AMR-NB condition by means

of a formal CCR listening test largely following [20, Annex E].

For this purpose, 7 female and 9 male normal-hearing German

non-experts were acquired in the same way as in the ACR test.

We organized eight sessions of two listeners providing them with

both condition pairs of all utterances and speakers in randomized

A/B-B/A-orders. The resulting 128 files per subject were diotically

presented in a quiet room via a standard laptop PC with an external

RME Fireface 400 sound card over an equalized Philips

SHP-8900 headphone at a sound pressure level that was individ-

ually calibrated during a preliminary familiarization phase. The

listeners were allowed to repeat single samples of a condition pair

before rating the quality of the second compared to the first sample

in terms of comparison MOS (CMOS) between −3 (much worse)

and +3 (much better).
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Fig. 1. Subjective results for the ACR listening test in terms of MOS

averaged over 24 subjects given a 95%-confidence interval.

4. EXPERIMENTAL RESULTS

In addition to the ACR and CCR listening test results given in Sec.

4.1, Sec. 4.2 presents an instrumental evaluation based on WB-PESQ

and POLQA. The subjective results as well as their correlation with

the instrumental measures are further discussed in Sec. 4.3.

4.1. Subjective Speech Quality Assessment

The overall MOS results of the subjective ACR listening test are de-

picted in Fig. 1 for all conditions with 95%-confidence intervals. Ob-

viously, the speech quality of the NB and WB MNRU reference an-

chors is reduced consistently by decreasing the speech to modulated

noise power ratio. As expected, the “clean” WB condition 17 attains

the highest MOS. The WB AMR conditions are rated somewhat

lower and perform better for higher bitrates. Note, however, that

the WB AMR conditions are scored somewhat higher than expected

(especially for the lowest bitrate) and that no significant difference

was observed between the clean NB and NB AMR conditions.

The baseline ABE versions are not able to exceed the NB AMR

performance, however, the use of windowing is found to be impor-

tant, especially for SLP in the training process (ABE1b, Sec. 2.1).

The second ABE system points out significant improvements, par-

ticularly ABE2C with a 0.4 point MOS gain, bridging one third of

the gap observed between a NB (condition 7) and a WB (condition

15) call. Reducing the aggressiveness of the extension according to

Sec. 2.2 turns out to be beneficial.

Note that the results are very similar, when taking the MOS for

each listening panel, headphone, listener, and speaker. A statistical

analysis by using t-tests according to [31, Annex C] demonstrates

that all ABE conditions are found to be “not worse than” the NB

AMR condition except for ABE1a, given 95%- and 99%-confidence

levels. Nevertheless, none of the baseline ABE conditions meets the

requirements of being “better than” the NB AMR condition. How-

ever, the conditions ABE2A-C all proof to be better at a confidence

level of 95% and 99%.

The NB AMR condition was finally compared to the ACR win-

ner conditions of both ABE systems, i.e., ABE1b and ABE2C, in a

subjective CCR listening test. Tab. 1 shows the overall CMOS results

with 95%-confidence intervals. ABE2C attains a CMOS of 1.17, so

it demonstrates a significantly better speech quality than NB AMR

and the highest score among all ABE conditions in both listening
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Conditions CMOS

NB AMR vs. ABE1b 0.79 (±0.11)

NB AMR vs. ABE2C 1.17 (±0.09)

Table 1. Subjective results for the CCR listening test in terms of

CMOS averaged over 16 subjects given a 95%-confidence interval.

tests. ABE1b also reveals a significant speech quality gain over NB

AMR of 0.79 CMOS in the CCR test, in contrast to the ACR results.

4.2. Instrumental Speech Quality Assessment

In addition to the subjective listening tests, we performed a speech

quality assessment based on instrumental measures. The WB-PESQ

standard and its new successor POLQA (in superwideband mode)

were therefore employed according to [19] and [21], respectively.

Both instrumental measures use an absolute rating scale correspond-

ing to the ACR listening test, which cannot be directly related to the

comparative rating scale of the CCR listening test.

Tab. 2 presents the overall instrumental results in terms of MOS

listening quality objective (MOS-LQO) compared to the MOS lis-

tening quality subjective (MOS-LQS) results of the ACR listening

test with 95%-confidence intervals. Obviously, the instrumental as-

sessment provides the same rank order as the subjective assessment

for NB MNRU conditions 1-6, WB AMR conditions 14-16 and WB

MNRU conditions 17-22. However, the absolute values differ by up

to one MOS point, as it is exemplarily the case for WB-PESQ in

condition 6 or POLQA in condition 19.

Taking into account all ABE conditions 8-13 including the NB

AMR condition 7, the rank orders of the instrumental assessment

significantly deviate from each other and particularly from the one

of the subjective ACR test. Furthermore, the absolute MOS range

for these conditions varies clearly among the assessment methods.

Actually, POLQA provides the smallest range. In contrast to WB-

PESQ and the subjective assessment, it rates the speech quality of all

ABE conditions and the NB AMR condition quite high, i.e., above

3.2 MOS. WB-PESQ captures the absolute values of the subjective

ratings better.

4.3. Discussion

Both instrumental measures perform quite well on the AMR and

MNRU conditions, at least in predicting consistent rank orders.

However, the subjective ABE ratings are hardly predicted reliably.

The following Pearson correlations according to [18] confirm these

observations. On the one hand, WB-PESQ and POLQA reveal over-

all correlations with the subjective assessment of r=0.92 (p<0.01)
and r=0.96 (p< 0.01), respectively. On the other hand, the corre-

lations decrease to r=0.82 (p< 0.05) for WB-PESQ and r=0.75
for POLQA, when taking into account only the ABE conditions

8-13. The corresponding root mean square errors of WB-PESQ

(0.14 MOS points) and POLQA (0.48 MOS points) suggest that

WB-PESQ seems to work even better for ABE than its succes-

sor POLQA. Unfortunately, none of the employed instrumental

measures is fully capable of replacing subjective speech quality

assessments for ABE systems.

But also the subjective ratings reveal an inconsistency: ABE1b is

found to be of the same speech quality as NB AMR in the ACR test,

whereas it turns out to be significantly better than NB AMR in the

CCR test. According to [32], the CCR results provide a higher sen-

sitivity. Due to the direct comparison of NB AMR and ABE condi-

tions in the CCR test, the listeners are assumed to be biased towards

the extended bandwidth in spite of the ABE artifacts, whereas in the

Conditions
WB-PESQ POLQA ACR test

[MOS-LQO] [MOS-LQO] [MOS-LQS]

1 1.34 (±0.11) 1.28 (±0.12) 1.05 (±0.04)

2 1.78 (±0.22) 1.48 (±0.17) 1.31 (±0.10)

3 2.42 (±0.27) 1.81 (±0.28) 1.89 (±0.11)

4 3.00 (±0.25) 2.35 (±0.35) 2.25 (±0.14)

5 3.40 (±0.24) 3.07 (±0.25) 2.77 (±0.14)

6 3.97 (±0.11) 3.63 (±0.08) 2.89 (±0.18)

7 3.08 (±0.24) 3.42 (±0.15) 2.91 (±0.17)

8 2.63 (±0.08) 3.20 (±0.11) 2.58 (±0.16)

9 3.17 (±0.15) 3.53 (±0.12) 2.92 (±0.17)

10 2.93 (±0.13) 3.49 (±0.13) 2.86 (±0.17)

11 2.96 (±0.12) 3.44 (±0.14) 3.15 (±0.16)

12 3.12 (±0.13) 3.52 (±0.14) 3.20 (±0.18)

13 3.22 (±0.16) 3.53 (±0.14) 3.31 (±0.15)

14 3.14 (±0.21) 3.64 (±0.18) 3.93 (±0.17)

15 3.71 (±0.17) 4.11 (±0.15) 4.11 (±0.15)

16 4.03 (±0.14) 4.42 (±0.15) 4.24 (±0.14)

17 4.64 (±0.00) 4.68 (±0.03) 4.67 (±0.11)

18 4.47 (±0.03) 4.62 (±0.06) 4.39 (±0.13)

19 3.83 (±0.09) 4.19 (±0.19) 3.17 (±0.17)

20 2.64 (±0.11) 2.23 (±0.20) 2.19 (±0.11)

21 1.50 (±0.08) 1.29 (±0.09) 1.41 (±0.11)

22 1.10 (±0.01) 1.17 (±0.06) 1.01 (±0.02)

Table 2. Instrumentally assessed speech quality using WB-PESQ

and POLQA compared to the subjective ACR test results from Fig. 1.

mixed-bandwidth ACR test, this bias is reduced and the weights of

the perceptual dimensions related to the bandwidth and artifacts are

more balanced in the subjective scores. Moreover, it may be extrap-

olated from these results that any comparison test will be influenced

by such a bias. From an end-user point of view, ACR tests could

be considered to better represent scenarios, where a WB call is fol-

lowed by a separate NB call, or vice versa. In contrast, a handover

call, which switches between WB and NB modes offering a direct

comparison, may be better represented by CCR tests.

5. CONCLUSIONS

This paper investigates the speech quality assessment of artificial

bandwidth extension (ABE). Besides an absolute category rating

(ACR) and a comparison category rating (CCR) listening test, WB-

PESQ and POLQA serve as instrumental measures. Although one

ABE solution (ABE2C) consistently attains the highest score among

all ABE conditions in both subjective tests outperforming NB AMR,

another ABE solution (ABE1b) is found to be of the same speech

quality as NB AMR in the ACR test, whereas it is judged to be

significantly better in the CCR test. Due to the direct comparison

between different bandwidths, CCR listeners are assumed to be bi-

ased towards higher bandwidths in spite of accompanying artifacts

and provide more sensitive results. Thus, CCR tests may be rather

suited for handover calls switching between WB and NB modes,

and ACR tests for successive WB and NB calls. The instrumental

measures turn out to poorly correlate with the ACR test results, so

they are not recommended to be used for ABE assessment.
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