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ABSTRACT

In this paper, a knowledge-aided parametric adaptive matched filter

(KA-PAMF) is proposed that utilizing both observations (including

the test and training signals) and a priori knowledge of the spatial co-

variance matrix. Unlike existing KA-PAMF methods, the proposed

KA-PAMF is able to automatically adjust the combining weight of a

priori covariance matrix, thus gaining enhanced robustness against

uncertainty in the prior knowledge. Meanwhile, the proposed KA-

PAMF is significantly more efficient than its KA non-parametric

counterparts when the amount of training signals is limited. One dis-

tinct feature of the proposed KA-PAMF is the inclusion of both the

test and training signals for automatic determination of the combin-

ing weights for the prior spatial covariance matrix and observations.

Numerical results are presented to demonstrate the effectiveness of

the proposed KA-PAMF, especially in the limited training scenarios.

Index Terms— STAP, parametric adaptive matched filter.

1. INTRODUCTION

Traditional space-time adaptive processing (STAP) methods such

as the Kelly’s generalized likelihood ratio test (GLRT) [1] and the

adaptive matched filter (AMF) [2] usually require excessive homo-

geneous training (secondary) data to obtain an accurate estimate of

the disturbance covariance matrix for adaptive detection of targets.

For example, it is known that for these methods at least K ≥ JN
homogeneous training signals are required for a full-rank covariance

matrix estimator, where J is the number of channels and N is the

number of temporal observations.

Knowledge-aided detectors have been introduced to reduce the

demanding need of training signals by fusing some prior knowledge

in the estimation of the disturbance covariance matrix [3]. One ap-

proach toward this goal is based on the Bayesian framework, which

embeds the a priori knowledge via a prior distribution of the dis-

turbance covariance matrix [4–10]. Another approach was based on

the regularized method [11–14], which usually linearly shrinks the

eigenvalues of the sample covariance matrix towards a targeted co-

variance matrix, e.g., the identity matrix up to a scaling factor [11], a

diagonal matrix consisting of the diagonal entries of the sample co-

variance matrix [12], or the a priori covariance matrix [14]. Interest-

ingly, both approaches result in a colored loading form between the

a priori matrix and the sample covariance matrix. While the weights
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in the Bayesian approach are determined by the hyper-parameters

of the statistical model, the regularized method uses the (training)

signals to determine the amount of regularization.

The regularized method has been considered for STAP detec-

tion, which employs the loaded covariance matrix for signal whiten-

ing and test statistic calculation. Specifically, [14] introduces the

knowledge-aided AMF (KA-AMF) which first linearly combines the

sample covariance matrix and the a priori covariance matrix [11],

which is then used in the conventional AMF for adaptive detection.

The linear combining weights are determined from the training sig-

nals. Results obtained with the KASSPER dataset show that with

J = 11 channels and N = 32 pulses, the proposed KA-AMF offers

good detection performance by using K = 50 training signals. Still,

it may be difficult to obtain K = 50 homogeneous training signals

in a non-homogeneous environment, where a more efficient solution

with less training data is desirable. Moreover, the computational

complexity of the KA-AMF is still high, since it needs compute to

the inverse of the JN × JN covariance matrix.

In this paper, we aim to address both issues of limited homoge-

neous training signals and the complexity by extending the paramet-

ric adaptive matched filter (PAMF) [15,16] and integrate knowledge-

aided processing. As shown with numerous simulated and measured

STAP datasets [16,17], the parametric framework using a multichan-

nel auto-regressive (AR) process can effectively and efficiently cap-

ture the correlation structure of the disturbance in STAP. Further-

more, we develop a regularized method which automatically deter-

mines the combining weights jointly from the test signal and train-

ing signals. Our scheme is different from other regularized methods,

such as the KA-AMF [14], which uses only the training signals to

determine the combining weights. It appears that the inclusion of

the test signal for weight calculation is critical to achieving a robust

performance in scenarios where the number of training data is lim-

ited. Our proposed knowledge-aided PAMF with automatic com-

bining (referred to as the KA-AC-PAMF hereafter) is derived in a

three-step approach. First, conditioned on the given AR temporal

correlation matrices, a partially adaptive detector is derived accord-

ing to the GLRT principle which yields an estimate of the spatial

covariance matrix. Then, the estimate of the spatial covariance ma-

trix is linearly combined with the prior knowledge in an adaptive

way from the test and training signals. Finally, the fully adaptive

KA-AC-PAMF is obtained by replacing the AR temporal correlation

matrices in the partially adaptive detector by its maximum likelihood

(ML) estimate.

2. SIGNAL MODEL

Consider the problem of detecting a known multi-channel signal with

unknown amplitude in the presence of spatially and temporally cor-
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related disturbance: (e.g., [18]):

H0 : x0(n) = d0(n), n = 0, 1, · · · , N − 1,

H1 : x0(n) = αs(n) + d0(n), n = 0, 1, · · · , N − 1,
(1)

where all vectors are J × 1 vectors obtained from J spatial

channels/receivers, and N is the number of temporal observa-

tions/snapshots. The subindex of x0(n) is referred to the range

bin of interest, and {x0(n)}N
n=1 forms the test signal from J

receivers and N pulses. The steering vector {s(n)}N
n=1 takes

into account of the array geometry with spatial frequency ωs

and the Doppler frequency ωd. For a uniformly equi-spaced lin-

ear array, the (normalized) steering vector is given as s(n) =

ejωd(n−1)[1, · · · , ejωs(J−1)]T /
√

JN . In addition, α denotes the

unknown, deterministic and complex-valued signal amplitude, and

d0(n) is the disturbance signal that is correlated in space and time.

Besides the test signal x0(n), there may be a set of target-free

training signals xk(n), k = 1, 2, · · · , K:

xk(n) = dk(n), k = 1, · · · , K. (2)

Denote the following JN×1 space-time vectors s ,
[

sT (0), · · · , sT (N − 1)
]T

,

dk ,
[

dT
k (0), · · · ,dT

k (N − 1)
]T

, and xk ,
[

xT
k (0), · · · ,xT

k (N − 1)
]T

.

It is assumed that the disturbance signals dk, k = 0, 1, · · · , K, are

independent and identically distributed (i.i.d.) with the complex

Gaussian distribution dk ∼ CN (0,R), where R is the unknown

space-time covariance matrix [1]. The parametric framework further

assumes that the disturbance signals {dk}K
k=0 in the test and training

signals follow the assumption below [16]:

• AS — Multi-Channel AR Model: The disturbance signals

dk(n), k = 0, . . . , K, in the test and training signals are

modeled as J-channel AR(P ) processes with model order P :

dk(n) = −∑P

i=1 AH(i)dk(n − i) + εk(n), (3)

where {A(i)}P
i=1 denote the unknown J × J AR coefficient

matrices, AH denotes the conjugate transpose of A, εk(n)
denote the J × 1 spatial noise vectors that are temporally

white but spatially colored Gaussian noise: {εk(n)}K

k=0 ∼
CN (0,Q), and Q denotes the unknown J ×J spatial covari-

ance matrix.

In other words, the disturbance covariance matrix R is parametrized

in AS with P AR coefficient matrices A(p) and the spatial covari-

ance matrix Q. In many cases, it is possible to have some a pri-

ori knowledge on R which can be utilized for improved detection

performance. Such knowledge can be obtained from previously ac-

quired database, e.g., digital terrain maps, synthetic aperture radar

(SAR) images, as well as from real-time information including the

transmit/receive array configurations, beampatterns, etc. [3]. In this

paper, we only assume a priori knowledge of the spatial covariance

matrix, denoted as Q̄, as it may be easier to obtain compared with

the a priori knowledge R̄ on the spatial-temporal covariance matrix.

3. PROPOSED APPROACH

In this section, we consider a three-step approach to develop the KA-

AC-PAMF detector. First, assuming that the AR coefficient matrix

A
△
= [AT (1),AT (2), · · · ,AT (P )]T is known, a partially adaptive

PAMF is derived by finding the ML estimates of unknown parame-

ters Q and α that maximize the joint likelihood function of the test

signal x0 and the training signals xk. Then, the ML estimate of

Q is regularized with the prior Q̄ according to the minimum mean

squared error (MMSE) criterion. Third, the AR coefficient matrix A

in the partially adaptive PAMF is replaced by its ML estimate of A

leading to the fully adaptive KA-AC-PAMF.

3.1. Partially Adaptive KA-PAMF

Assuming AS with a known A, the partially adaptive PAMF takes

the form of a likelihood ratio test

T =

max
α,Q

f1(α,Q)

max
Q

f0(Q)
, (4)

where fi(α,Q) is the joint (asymptotic) likelihood function of x0

and xk under Hi, i = 0, 1,

fi (α,Q) =

[

1

πJ |Q|e
−tr(Q−1Γ(α))

](K+1)(N−P )

, (5)

with α = 0 when i = 0,

Γ (α) =
(

X̃0 − αS̃
) (

X̃0 − αS̃
)H

+
K
∑

k=1

X̃kX̃
H
k , (6)

and

S̃ = [s̃ (P ) , · · · , s̃ (N − 1)] ∈J×(N−P ), (7)

X̃k = [x̃k (P ) , · · · , x̃k (N − 1)] ∈J×(N−P ), (8)

x̃k (n) = xk (n) + A
H
yk (n) , (9)

s̃ (n) = s (n) + A
H
t (n) , (10)

yk (n) =
[

x
T
k (n − 1) , · · · ,xT

k (n − P )
]T

, (11)

t (n) =
[

s
T (n − 1) , · · · , sT (n − P )

]T

, (12)

for k = 0, 1, · · · , K. Note that (9) and (10) perform the tempo-

ral whitening for xk(n) and s(n). It can be shown in [19] that the

partially adaptive GLRT takes the form of

T =

∣

∣

∣
tr
{

S̃HΨ−1X̃0

}
∣

∣

∣

2

tr
{

S̃HΨ−1S̃
} =

∣

∣

∣

∣

N−1
∑

n=P

s̃H (n)Ψ−1x̃0 (n)

∣

∣

∣

∣

2

N−1
∑

n=P

s̃H (n)Ψ−1s̃ (n)

, (13)

where

Ψ =
1

L

(

X̃0P
⊥
X̃

H
0 +

K
∑

k=1

X̃kX̃
H
k

)

, (14)

with L = K(N−P )+N−P−1 and P⊥ = I−P = I−S̃H(S̃H)†

denoting the projection matrix projecting to the orthogonal comple-

ment of the range of S̃H .

It is seen that the partially adaptive PAMF first performs the

temporal whitening process to obtain the test and training signals

{x̃k(n)}K
k=0 and the steering vector s̃(n) via (9) and (10), and then

performs the spatial whitening process in (13) with Ψ of (14). More

importantly, the spatial whitening matrix Ψ of (14) includes contri-

bution from the temporally whitened test signal x̃0(n) (after project-

ing onto the orthogonal complement of the range space of S̃H ) and

the temporally whitened training signals x̃k(n). It is also noted that
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Ψ of (14) is an unbiased estimator of Q under the two hypotheses,

as summarized in the following proposition: 1

Proposition: Given the signal model of {xk(n)}K
k=0 and s(n)

and assuming the multichannel AR model in AS, the estimate Ψ of

(14) is an unbiased estimate of Q under the two hypotheses

E{Ψ} = Q, under H0 and H1. (15)

3.2. Automatic Weighting Between Ψ and Q̄

We consider a linear combination scheme between the unbiased

Ψ and the prior Q̄ according to the minimum mean squared error

(MMSE) criterion [11,14]. Consistent with the fact that the estimate

Ψ consists of both the test and training signals, we propose to use

the test and training signals for automatic determination of the linear

combining weights, thus extending the regularized method in [11]

and [14] which uses only the training signals. As shown in later nu-

merical examples, the inclusion of the test signal leads to improved

performance when the number of training signals is limited.

Specifically, we consider a convex combination between Q̄ and

the estimate Ψ 2

Q̃ = βQ̄ + (1 − β)Ψ, (16)

where β ∈ [0, 1] is the combining weight to be determined. This

scheme is to balance the contribution from the prior knowledge and

the observed signals. One can replace Q̄ by an identify matrix in the

case that Q̄ is unavailable or has a large amount of uncertainty.

As shown in [11, 14] and thanks to the proposition of the unbi-

asedness, the optimal weight β in (16) is determined as

β =
E{‖Ψ − Q‖2}
E{‖Ψ − Q̄‖2} =

E{‖Ψ − Q‖2}
E{‖Ψ − Q‖2} + ‖Q̄ − Q‖2

. (17)

Define ρ
△
= E{‖Ψ − Q‖2} and ν

△
= ‖Q̄ − Q‖2. Since ρ and

ν depend on the true but unobservable Q, the optimal combining

weight β has to be estimated from the observations. In our case, we

use both the test and training signals to achieve this purpose.

First, regarding the estimate of ρ, we show in the following that

Ψ can be considered as equivalently the sample covariance matrix

from a set of L i.i.d. Gaussian vectors, among which N − P − 1
vectors are obtained from the test signal and the remaining K(N −
P ) vectors are from the training signals. From (14), Ψ consists of

two components:

LΨ = X̃0P
⊥
X̃

H
0 +

K
∑

k=1

X̃kX̃
H
k = E0P

⊥
E

H
0 +

K
∑

k=1

EkE
H
k ,

where Ek = [ǫk(P ), · · · , ǫk(N − 1)], k = 0, 1, 2, · · · , K with

columns ǫk(n) distributed as i.i.d. complex Gaussian vectors with

zero mean and covariance matrix Q.

Then the (N −P )× (N −P − 1) orthogonal projection matrix

P⊥ can be decomposed to

P
⊥ = UPU

H
P , (18)

where UP is an (N − P ) × (N − P − 1) matrix with N − P − 1
orthonormal columns. Together with the N − P i.i.d. Gaussian

1The proof is straightforward by noting that temporally whitened test sig-
nal x̃0(n) is statistically equivalent to the spatial noise vector ǫ0(n) plus
αs̃(n), while the training signals x̃k(n) are statistically equivalent to ǫk(n).

2Other linear combination such as the generalized linear combination
(GLC) can be derived similarly, which has a similar performance.

columns in E0 and the (N − P − 1) orthonormal columns of UP,

the resulting N − P − 1 columns of

Z0 = X0UP = E0UP = [z0(P ), · · · , z0(N − P − 1)], (19)

are i.i.d. Gaussian vectors with zero mean and covariance matrix Q,

i.e., z0(n) ∼ CN (0,Q). As a result,

X̃0P
⊥
X̃

H
0 = E0P

⊥
E

H
0 = Z0Z

H
0 =

N−P−1
∑

n=P

z0(n)zH
0 (n). (20)

For the training signal component, we define zk(n) = x̃k(n), where

zk(n) are i.i.d. Gaussian vectors with zero mean and covariance

matrix Q. Stacking all zk(n), we have a set of L i.i.d. Gaussian

vectors

z(n) =



















z0(l), n = 1, 2, · · · , N − P − 1, l = n + P − 1,

zk(l), n = N − P, · · · , L, k =

⌊

n − (N − P )

N − P

⌋

,

l = n − (k + 1)(N − P ) + P.

(21)

Therefore, Ψ = 1
L

L
∑

n=1

z(n)zH(n) can be considered as the sample

covariance matrix from L i.i.d. Gaussian vectors z(n) with zero

mean and covariance matrix Q.

With the above results, the estimate of ρ reduces to the estima-

tion of β from L i.i.d. random vectors with zero mean and covariance

matrix Q. Then, the coefficient ρ can be adaptively estimated as

ρ̃ =
1

(L − 1)L

L
∑

n=1

‖z(n)zH(n) − Ψ‖2. (22)

For the second quantity ν, we simply replace the true Q by the

unbiased estimate Ψ

ν̃ = ‖Q0 − Ψ‖2, (23)

which leads to the knowledge-aided spatial covariance matrix esti-

mate

Q̃ =
ρ̃

ρ̃ + ν̃
Q̄ +

ν̃

ρ̃ + ν̃
Ψ. (24)

3.3. Fully Adaptive KA-PAMF

Finally, an adaptive estimate of A is needed to enable a fully adap-

tive KA-AC-PAMF. In the following, the ML estimate of A from

the training signals, derived in [20], is used. Specifically, the ML

estimate of A can be computed as follows

ÂML = −R̂
H
yx,KR̂

−1
yy,K , (25)

where

R̂yy,K =
K
∑

k=1

N−1
∑

n=P

yk (n)yH
k (n), (26)

R̂yx,K =
K
∑

k=1

N−1
∑

n=P

yk (n)xH
k (n), (27)

with yk (n) is defined in (11).
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Using the ML estimate of A in (13), the proposed KA-AC-

PAMF detector takes the form of

TKA-PAMF =

∣

∣

∣

∣

N−1
∑

n=P

ˆ̃s
H

(n) ˆ̃
Q

−1
ˆ̃x0 (n)

∣

∣

∣

∣

2

N−1
∑

n=P

ˆ̃s
H

(n) ˆ̃
Q

−1
ˆ̃s (n)

, (28)

where the fully adaptively temporally whitened vectors

ˆ̃xk (n) = xk (n) +

P
∑

p=1

Â
H
ML (p)xk (n − p),

ˆ̃s (n) = s (n) +
P
∑

p=1

Â
H
ML (p) s (n − p),

and, correspondingly,

ˆ̃
Xk =

[

ˆ̃xk(P ), · · · , ˆ̃xk(N − 1)
]

, ˆ̃
S =

[

ˆ̃s(P ), · · · , ˆ̃s(N − 1)
]

.

Then, the vectors ẑ(n) is formed from the columns of the following

matrices

Ẑ0 = ˆ̃
X0ÛP̂, Ẑk = ˆ̃

Xk, k = 1, 2, · · · , K,

where ÛP̂ given as ÛP̂ = Null(P̂) with P̂ = ˆ̃
S

H

(ˆ̃S
H

)†. Finally,

the spatial covariance matrix is estimated as

ˆ̃
Q =

ˆ̃ρ
ˆ̃ρ + ˆ̃ν

Q̄ +
ν̂

ˆ̃ρ + ˆ̃ν
Ψ̂,

where Ψ̂ = L−1∑L

n=1 ẑ(n)ẑH(n) and

ˆ̃ρ =
1

(L − 1)L

L
∑

n=1

‖ẑ(n)ẑH(n) − Ψ̂‖2, ˆ̃ν = ‖Q0 − Ψ̂‖2.

4. NUMERICAL RESULTS

In this section, numerical results are provided to compare the pro-

posed KA-AC-PAMF with other conventional and knowledge-aided

parametric detectors in terms of the detection performance versus

the signal-to-interference-plus-noise ratio (SINR) for a probability

of false alarm Pf = 0.01. Specifically, we consider 1) the conven-

tional PAMF [16], 2) the Bayesian KA-PAMF [19] with a random

guess of the hyper-prior parameter, and 3) the KA-AMF [14]. The

analytical performance of the optimal matched filter is also shown to

provide the benchmark. In simulations, the disturbance signals dk

are generated from the AR(3) process with a given A and Q. To

account for the uncertainty of prior knowledge about Q, a perturbed

version of Q is used as Q̄ [14]

Q̄ = Q ⊙ tst
H
s , (29)

where ts is a J × 1 vector of i.i.d. Gaussian random vectors with

mean 1 and variance σ2
t , and ⊙ denotes the Hadamard matrix prod-

uct. Specifically, we refer to the σ2
t as the uncertainty variance (UV).

As the UV increases, the prior knowledge Q̄ is on average away from

the true Q. The SINR is defined as

SINR = |α2|sH
R

−1
s, (30)
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Fig. 1. Probability of detection when K = 2, J = 4, N = 16,

Pf = 0.01

where R is the spatial-temporal covariance matrix corresponding to

the multi-channel AR process with coefficients A and Q. Then the

prior R̄ for the KA-AMF is generated by using the same perturbation

model (29) as R̄ = R ⊙ ttH , where t is a JN × 1 vector of i.i.d.

Gaussian random vectors with mean 1 and the same variance σ2
t . For

the synthesized AR dataset, the number of channel is J = 4 and the

number of temporal observations is N = 16.

We first consider the case of UV = 1, e.g., a case with a rel-

atively reliable prior (Q̄ for the parametric detectors and R̄ for the

KA-AMF) and the number of training signals K = 2. Without us-

ing the prior knowledge, the conventional PAMF fully relies on the

K = 2 training signals and, as shown in Fig. 1 (a), its performance

is the worst among the parameter detectors. Although utilizing the

prior knowledge, the KA-AMF shows worse performance than the

parametric detectors since the limited K = 8 training signals, com-

pared with the total dimension JN = 64, are unable to obtain a

good covariance matrix estimate without exploiting the structural in-

formation of R. In contrast, by using the prior Q̄ and exploiting the

multi-channel AR structure, the knowledge-aided parametric detec-

tors, i.e., the B-PAMF and the proposed KA-AC-PAMF, give im-

proved performance than the conventional PAMF and the KA-AMF.

In addition, the proposed KA-AC-PAMF has an SINR improvement

of about 1 dB over the B-PAMF.

Next, we increase the prior uncertainty to UV = 5. Since the

conventional PAMF uses no prior knowledge, its performance is in-

dependent of the UV as shown in Fig. 1 (b). Comparison between

Fig. 1 (a) and Fig. 1 (b) reveals that the increased UV has little im-

pacts on the KA-AMF and the proposed KA-AC-PAMF since they

both determine the combining weight adaptively from the obser-

vations. There is a noticeable performance degradation for the B-

PAMF which uses a non-adaptive weight on Q̄, regardless of the

prior uncertainty.

5. CONCLUSION

In this paper, a new knowledge-aided PAMF is proposed which auto-

matically determines the linear combining weights between the prior

covariance matrix and the conventional covariance estimate using

both the test and training signals. On one hand, the proposed detec-

tor is more robust against uncertainty in the prior knowledge than

the existing knowledge-aided PAMF. On the other hand, it also out-

performs the knowledge-aided non-parametric detector in scenarios

with limited training signals. Simulation results confirm the effec-

tiveness of the proposed detector.
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