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ABSTRACT

This paper addresses the problem of mitigating non-stationary
diffusely scattered multipath interference or “hot clutter” by
space-time adaptive processing (STAP) in radar systems that
use a multi-channel receive antenna array. A computationally
efficient time-varying (TV) fast-time STAP algorithm that can
effectively cancel hot clutter during the coherent processing
interval (CPI) while simultaneously preserving the Doppler
spectrum characteristics of the ordinary backscattered “cold
clutter” is proposed. The TV-STAP method is compared with
several benchmark techniques in a numerical study simulating
aircraft and ship detection in over-the-horizon (OTH) radar.

Index Terms— STAP, OTH Radar, Hot Clutter

1. INTRODUCTION

The topic of space-time adaptive processing (STAP) to mit-
igate clutter and interference in radar systems has received
enormous attention in the literature [1-3]. In particular, the
“fast-time” STAP architecture is traditionally considered for
the specific problem of rejecting diffuse multipath interfer-
ence, or “hot clutter”, which may be received through the
main lobe of the antenna pattern [4-6].

In practical applications, the space-time covariance matrix
of the received hot-clutter signal may be time-varying over the
radar CPI. For this reason, STAP techniques that can jointly
cancel the non-stationary hot clutter signal and preserve the
Doppler spectrum characteristics of the backscattered “cold
clutter” echoes over the CPI are required [7].

The stochastic constraints (SC) STAP method pioneered
by Abramovich has been described in [8-10] to address this
challenging problem. The SC-STAP method adapts the weight
vector at every pulse in the CPI to effectively reject hot clutter
while stabilizing the auto-regressive spectral characteristics of
cold clutter at the output.

However, SC-STAP is computationally intensive for real-
time applications. This is mainly because the rate of filter
adaptation is determined by the need to protect the AR Doppler
spectrum properties of the cold clutter, irrespective of the level
of hot-clutter non-stationarity, which ought to be the primary
reason for re-adapting the STAP weights [11].

For practical systems, this strongly motivates fast-time
TV-STAP algorithms that are computationally efficient while,
at the same time, yield high performance comparable to the
SC-STAP method. The TV-STAP method introduced in this
paper follows the same basic idea as the SC-STAP technique,
but is structured differently to mitigate the aforementioned
limitation of the original approach proposed for OTH radar.

The paper is organized as follows. Section 2 describes the
data model, while section 3 presents the TV-STAP method.
The numerical study in section 4 compares the performance
of SC-STAP, TV-STAP, and the time-invariant fast-time STAP
technique. Concluding remarks are given in section 5.

2. DATA MODEL

Let xk(t) ∈ CN be the array snapshot vector received by the
N antenna elements of a uniform linear array (ULA) at fast-
time sample (range bin) k = 1, . . . ,K and slow-time sample
(pulse number) t = 1, . . . , P in the radar CPI. In (1), ck(t) is
the cold clutter backscattered from the Earth’s surface, jk(t)
is hot clutter from all jamming sources, and nk(t) is additive
noise. The presence of a target echo is represented by sk(t).

xk(t) = sk(t) + ck(t) + jk(t) + nk(t) (1)

A far-field point-target echo with cone angle-of-arrival φ0 is
modelled in (2), where a is a complex scalar amplitude, ψk is
the signal waveform, fd is the target Doppler-shift normalized
by the pulse repetition frequency (PRF), s(φ0) is the steering
vector on the ULA manifold, and γk is a range-dependent
phase. A desired signal matched to range bin k0 has a fast-
time signature ψk = δ(k−k0) for a pulsed-waveform system.
For a continuous-wave system, ψk = up(k−k0), where up(k)
is the transmitted signal pulse.

sk(t) = aψks(φ0) exp {j2πfdt+ γk} (2)

The noise process is assumed to be complex-circular Gaus-
sian distributed and white across all radar data-cube dimen-
sions, i.e., with the correlation properties in (3), where σ2

n

is the noise power per antenna element, and IN is the N -
dimensional identity matrix. In (3), E{·} denotes statistical
expectation, whereas † is the Hermitian (conjugate transpose)
operator.

E{nk(t)n
†
k′(t

′)} = δkk′δtt′IN (3)
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2.1. Cold Clutter

As in [9], ck(t) is modelled as a stationary Gaussian random
process with second order statistics given by a scalar-type
multi-variate auto-regressive (AR) process of relatively low
order κ ≪ N . The complex scalar coefficients {bi}κi=1 and
σ2
ε of the AR model in (4) determine the structure and scale

of the cold clutter Doppler power spectrum, respectively.

ck(t) +
κ∑

i=1

bick(t− i) = σ2
εεk(t) (4)

The correlation properties of the temporally white innovative
noise vectors εk(t) ∈ CN in (5) effect the power and spatial
distribution of the cold clutter. Due to the relatively broad
transmit beam used to illuminate the OTH radar surveillance
region, the cold clutter is spatially broadband such that Rc

has full rank. For a spatially stationary clutter process, Rc is
a Toeplitz matrix with diagonal elements equal to the clutter
power σ2

c received in each antenna element.

E
{
εk(t)ε

†
k′(t

′)
}
= δkk′δtt′Rc (5)

A simple model for the spatial distribution of the cold clutter
assumes Rc = σ2

cToep[1, ρs, . . . , ρN−1
s ], where the complex

scalar ρs represents the clutter inter-sensor spatial correlation
coefficient. Similarly, AR model orders of κ = 1 and κ = 2
may be assumed in the simplest case for high and low PRF
operation, respectively.

2.2. Hot Clutter

The hot clutter jk(t) is modelled as a convolutive mixture of
M interference sources gmk(t) for m = 1, . . . ,M in (6).
Here, gk(t) = [g1k(t), . . . , gMk(t)]

T contains the M source
signals. The N ×M matrix Hℓ(t) = [h1ℓ(t), . . . ,hMℓ(t)]
contains the hot-clutter wavefronts hmℓ(t) at fast-time k and
slow-time t. Note that L is the maximum hot clutter channel
impulse response function duration in fast-time samples [9].

jk(t) =
L∑

ℓ=1

Hℓ(t)gk−ℓ+1(t) (6)

Specifically, the (n,m)th element of Hℓ(t) is the complex
channel coefficient that transfers source m to receiver n at
relative delay ℓ in repetition period t. The waveforms gmk(t)
are assumed to be mutually independent with the correlation
properties in (7). Note that the power of each hot-clutter mode
is absorbed in the channel vectors hmℓ(t) described below.

E {gmk(t)g
∗
m′k′(t′)} = δmm′δtt′δkk′ (7)

The random vectors hmℓ(t) are assumed to be independent
for different sources and modes. In (8), Amℓ and fmℓ denote
the RMS amplitude and Doppler shift of mode ℓ from source

m, respectively, while the N ×N matrix Smℓ represents the
mean synthetic wavefront of this mode in the CPI. The vector
cmℓ(t) incorporates the random spatio-temporal fluctuations
of the received hot clutter wavefronts. This accounts for the
DOA and Doppler spread imposed on the various sources and
modes. See [7,12] for a detailed description of this model.

hmℓ(t) = AmℓSmℓcmℓ(t) exp {j2πfmℓt} (8)

The simplest model for cmℓ(t) is a two-dimensional (space-
time) Markov chain defined by two parameters, namely, a
temporal correlation coefficient αmℓ, and a spatial correlation
coefficient βmℓ. Lower values of αmℓ and βmℓ correspond to
modes with rapid temporal fluctuations and large wavefront
“crinkles”. For q = 0, . . . , Q − 1, the fast-time-lagged hot
clutter covariance matrix Rq(t) = E{jk(t)j†k−q(t)} is given
by (9). Clearly, Rq(t) = 0 for q ≥ L since there is no pair
of modes with a differential delay exceeding the maximum
impulse response duration of the hot clutter channel.

Rq(t) =
M∑

m=1

L−q∑
ℓ=1

AmℓAmℓ+qSmℓcmℓ(t)c
†
mℓ+q(t)S

†
mℓ+q

(9)
The hot-clutter space-time covariance matrix for Q fast-time
taps in (10) remains constant during the “quasi-instantaneous”
PRI but changes in slow-time t over the relatively long CPI to
represent the non-stationarity hot clutter phenomenon.

R̃(t) = Toep[R0(t),R1(t), . . . ,RQ−1(t)] (10)

3. STAP ALGORITHM

Fast-time STAP algorithms operate on NQ-variate “stacked”
data vectors x̃k(t) defined in (11), and the scalar output zk(t)
processed by the NQ-variate STAP filter w̃k(t) is given by
zk(t) = w̃†

k(t)x̃k(t). Note that this filter does not attempt
to cancel the cold clutter, which is dealt with by standard
Doppler processing of the “finger beam” output zk(t).

x̃k(t) =
[
xk(t)

T ,xk−1(t)
T , . . . ,xk−Q+1(t)

T
]T

(11)

The practical TV-STAP procedure replaces the unknown ma-
trix R̃(t) by its regularized sample estimate R̂b in (12). Av-
eraging is performed over Nk fast-time samples containing
hot-clutter only inNp consecutive pulses belonging to integer
batch number b = 1, . . . , Nb = P/Np of the CPI.

R̂b =
1

NpNk

bNp+κ∑
t=(b−1)Np+1

Nk∑
k=1

x̃k(t)x̃
†
k(t) + σ2INQ (12)

The practical TV-STAP algorithm is formulated in terms of
q deterministic and κ data-driven linear constraints in (13).
The former are defined by AQ(θ) = s(φ0) ⊗ IQ, where ⊗
is the Kronecker product, and eQ = [1, 0, . . . , 0]T . The latter
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take the form of w†x̃k(t) = ŵ†
k(b − 1)x̃k(t) for slow-time

samples t = Np(b− 1), . . . , Np(b− 1) + κ− 1 in batch b.

ŵk(b) = argmin
w

w†R̂bw

subject to

{
w†AQ(θ) = eTQ,

w†x̃k(t) = ŵ†
k(b− 1)x̃k(t)

(13)

The first STAP filter (b = 1) has only deterministic constraints
and is ŵk(1) = R̂−1

1 AQ(θ)[AQ(θ)
†R̂−1

1 AQ(θ)]
−1eQ. For

batches b = 2, . . . , Nb, the STAP filter also satisfies the data-
driven constraints and is given by (14).

ŵk(b) = R̂−1
b Ĉk(b)[Ĉ

†
k(b)R̂

−1
b Ĉk(b)]

−1f̂k(b) (14)

Here, Ĉk(b) = [Aq(θ0), x̃k(Np(b−1)), . . . , x̃k(Np(b−1)+

κ − 1)] is the constraint matrix and f̂k(b) = [eTq , ŵ
†
k(b −

1)x̃k(Np(b−1)), . . . , ŵ†
k(b−1)x̃k(Np(b−1)+κ−1))]T is

the response vector. In the interest of brevity, the reader is re-
ferred to [9] for a description of the SC-STAP method, which
serves as benchmark for comparisons in the next section.

TV-STAP reduces the number of complex multiplications
relative to SC-STAP by a factor that is closely approximated
by the batch length Np. For example, if the hot clutter can
be considered effectively “stationary” over a ship-detection
pulse with 4 Hz PRF, the same signal may also be considered
stationary over 15 consecutive air-detection pulses at a PRF of
60 Hz, as the physical time interval is unchanged. In this case,
TV-STAP using Np = 16 may be expected to cancel the hot
clutter as effectively as SC-STAP with an order of magnitude
reduction in computational load.

4. SIMULATION RESULTS

Assume the radar transmits P = 256 pulses and receives on a
ULA ofN = 16 antennas with half-wavelength inter-element
spacing. The beam is steered at broadside and there is single
hot clutter source with four modes (M = 1, L = 4). The
hot clutter model parameters are listed in Table 1. The DOA
of the first mode is intentionally chosen in the main beam
to demonstrate the benefit of fast-time STAP over pure SAP.
The temporal hot clutter parameters have been specified for
low and high PRF modes. HCNR denotes hot-clutter-to-noise
ratio. The model parameters of the cold clutter are listed in
Table 2 for terrain (κ = 1) and sea surface (κ = 2) scattering.

Hot Clutter θmℓ, deg. αmℓ(5 Hz) αmℓ(50 Hz) βmℓ HCNR, dB
Mode 1 0.5 1.00 1.00 1.00 30
Mode 2 20.5 0.90 0.98 0.91 25
Mode 3 39.3 0.88 0.97 0.90 20
Mode 4 44.9 0.91 0.99 0.90 35

Table 1. Hot clutter parameters for a source with four modes.

Fig. 1 shows the optimum SHCR for different schemes
in the “clairvoyant” case. The term unconstrained refers to
no data-driven constraints. As expected, unconstrained STAP

Cold Clutter b1 b2 σ2
ε ρs CNR, dB

Sea-surface, fp = 5 Hz -1.9359 0.998 0.009675 0.5 50
Terrain, fp = 50 Hz 0.999 0 0.002 0.5 50

Table 2. Cold clutter parameters for terrain and sea scattering.

rejects the hot clutter best (Q = 3 taps were used for all
STAP schemes). Unconstrained SAP is ineffective due to the
presence of main beam hot clutter, while time-invariant STAP
cannot cancel the non-stationary hot clutter effectively.

Fig. 2 illustrates the cold-clutter Doppler spectrum at the
output of the unconstrained and time-invariant STAP filters as
well SC-STAP filter using the second-order AR (sea-scattering)
model. The dramatic degradation in sub-clutter visibility (SCV)
is obvious when unconstrained STAP is applied. Fig. 3 con-
firms that the cold-clutter Doppler spectra at the output of
SC-STAP and TV-STAP have practically identical SCV to the
time-invariant STAP approach.

Figs. 4 and 5 show the performance of the practical STAP
schemes, where the hot-clutter covariance matrix is estimated
from training data, and data snapshots containing hot and cold
clutter are used to generate the auxiliary data-driven linear
constraints. A total of Nk = 50 training range cells in each
PRI were deemed to be free of cold clutter. These results
confirm that TV-STAP can reduce computational complexity
for negligible performance loss in the ship-detection case.

Figs. 6 and 7 show the Doppler spectra for practical STAP
schemes in the high PRF example. In this case, both SC-
STAP and TV-STAP employ a single auxiliary linear con-
straint to protect SCV. Fig. 7 compares SC-STAP with TV-
STAP using a batch length of Np = 16 pulses. This batch
length provides an order of magnitude reduction in compu-
tational load with respect to SC-STAP for negligible loss in
hot-clutter rejection. Both SC-STAP and TV-STAP detect the
desired signal in Fig. 7, but time-invariant STAP leads to a
degradation in hot clutter rejection of about 25 dB in Fig. 6.

5. CONCLUSIONS

A TV-STAP technique has been introduced for non-stationary
hot clutter cancellation. Simulation results confirm that TV-
STAP can yield comparable performance to the benchmark
SC-STAP method. However, the philosophy behind TV-STAP
is to update the filter weights at a rate commensurate with the
level of hot clutter non-stationarity rather than at every PRI
to stabilize the AR characteristics of the output cold-clutter
Doppler spectrum. This difference with respect to SC-STAP
gives TV-STAP the added practical advantage of significantly
reduced computational complexity. The order of magnitude
reduction in processing load achieved by TV-STAP in high
PRF applications helps to break the bottleneck of real-time
processing in practical radar systems with no compromise in
performance on the simulated data presented in this study.
See [13] for a possible real-time implementation procedure.
Testing on experimental data is the subject of future work.
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Fig. 1. Optimum output signal-to-hot clutter ratio (SHCR) for
standard fast-time STAP and pure spatial adaptive processing
(SAP) as a function of slow-time over the CPI.

Fig. 2. Doppler spectra showing the sub-clutter visibility at
the output of the standard STAP techniques and the SC-STAP
method when processing the cold clutter.

Fig. 3. Doppler spectra showing the sub-clutter visibility at
the output of SC-STAP and TV-STAP using different batch
lengths when processing the cold clutter.

Fig. 4. Doppler spectra for the practical time-invariant STAP
and SC-STAP algorithms in the ship detection example with
an injected desired signal.

Fig. 5. Doppler spectra for practical SC-STAP and TV-STAP
in the ship detection example with an injected desired signal.

Fig. 6. High PRF mode Doppler spectra for practical time-
invariant STAP and SC-STAP algorithms in the aircraft de-
tection example with an injected target.

Fig. 7. High PRF Doppler spectra for practical SC-STAP and
TV-STAP algorithms in the aircraft detection example with an
injected target.
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