
TIME-DELAY ESTIMATION FOR TOA-BASED LOCALIZATION OF MULTIPLE SENSORS

Richard Heusdens and Nikolay Gaubitch

Signal and Information Processing lab, Delft University of Technology, the Netherlands
email: {r.heusdens, n.d.gaubitch}@tudelft.nl

ABSTRACT

In many applications using multiple sensors, knowledge of the rela-
tive positions of the sensors is required. The locations of the sensors

can be obtained from measured time-of-arrivals (TOAs) of events

generated by sources. Although several TOA-based localization

techniques exist, practical TOA measurements are incomplete be-
cause they include an unknown internal delay; the time taken from

the signal reaching the sensor to that it is registered as received

by the capturing device. In order to localize the sensors properly,

these internal delays need to be estimated accurately. In this paper
we propose a method for estimating the internal delays by using a

data fitting technique based on structured total least squares. Under

reasonable assumptions we show that the algorithm is guaranteed to

converge to the optimal solution and ultimately achieves a quadratic

rate of convergence. Experimental results show that the execution
time is less than 1% of the execution time of existing methods while

attaining an even higher accuracy.

Index Terms— Auto-localization, time-of-arrival, internal de-
lay estimation, structured total least norm

1. INTRODUCTION

Recent developments in the area of wireless sensors enable the con-

struction of (wireless) sensor networks consisting of a large number
of nodes, each having a sensing, data processing, and communica-

tion component. Sensor networks facilitate the use of spatial signal

processing such as computing temperature densities, concentrations

of pollution, or beam forming [1]. An example of beam forming can
be found in applications such as speech enhancement where mul-

tiple microphones can be used to improve both speech quality and

speech intelligibility in noisy environments [2, 3]. In many such

applications, knowledge of the relative positions of the sensors is re-
quired. This requirement is easily satisfied in conventional sensor

arrays where the sensors are positioned in a fixed configuration. In

(ad-hoc) sensor networks, however, sensor locations are not known

a-priori and, in addition, sensors will be added or removed, usually

in an unpredictable way. As a consequence, with (ad-hoc) sensor
networks, a method to automatically localize the sensors is neces-

sary.

Many techniques for localizing sensors exist such as methods
based on received signal strength [4, 5], time-of-arrival (TOA, some-

times called time-of-flight (TOF)) [6, 7], time-difference-of-arrival

(TDOA) [7], angle-of-arrival [8, 9], or diffuse noise field coherence

in the case of an acoustic sensor network [10]. In many applications,
TOA and TDOA based techniques are most popular since they are

less vulnerable to multi path, they can be used using both ultrasound
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and audible frequencies, and they require only one receiver per sen-

sor. In this paper we will focus on TOA based sensor localization,

although the results apply to TDOA based techniques as well.

Given the inter-sensor distances (obtained by multiplying the
TOAs by the speed of sound), different techniques exist to local-

ize the sensors. One of the earliest methods for auto-localization

is multi-dimensional scaling (MDS) [11, 12, 6], which provides

the relative configuration of sensors given the distances between
all sensors. MDS implicitly assumes that sensors and sources are

co-located, which is of limited applicability for sensor networks.

Alternatively, source locations can be found by maximum likeli-

hood estimation of the sensor locations via triangularization [13].
Likelihood maximization, however, is a non-convex problem and

has, therefore, possibly multiple solutions. An alternative approach

particularly interesting for auto localization in large-scale sensor

networks was presented in [14] where it is assumed that sources

are in the far-field. It was shown that the sensor locations can be
computed analytically, through singular value decomposition of the

matrix containing the relative arrival times, up to a d × d invertible

matrix where d denotes the dimension of the space the sensors are

located in. Finding the appropriate invertible matrix is a non-linear
optimization problem, but is of much lower dimension than the

original problem. This method was recently generalized [15, 16]

such that it no longer relies on the far-field assumption. In addition,

it was shown that if one of the sources is co-located with one of the
sensors, a completely closed-form solution to the source localization

problem exists.

Although several TOA-based localization techniques exist, prac-

tical TOA measurements are incomplete because they include an

unknown source onset time (the time the source event was gener-
ated) and an unknown internal delay (the time taken from the signal

reaching the sensor to that it is registered as received by the captur-

ing device). In [17], a solution to this problem is presented which

is based on alternating minimization [18], where the source onset
times and internal delays are found by an iterative procedure involv-

ing low-rank approximation and (non-linear) least-squares optimiza-

tion. Although alternating minimization is a simple algorithm, it can

be slow in terms of convergence rate. In addition, since the prob-

lem is non-convex, alternating minimization, without taking special
precautions, can easily end up in local minima. An alternative ap-

proach has been proposed in [19] where the problem is tackled us-

ing truncated nuclear norm regularization. Here, low-rank approx-

imation is formulated as a constrained nuclear norm minimization
problem which is solved using the alternating direction method of

multipliers (ADMM). Similar to alternating minimization, ADMM

can converge slowly to high accuracy [20]. The slow convergence

of both alternating minimization and ADMM distinguishes it from
algorithms such as Newtons method (or, for constrained problems,

interior-point methods), where high accuracy can be attained in a

reasonable amount of time (quadratic convergence rate). In this pa-
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per we solve the above mentioned problem using a data fitting tech-

nique based on structured total least squares [21, 22, 23]. Under
reasonable assumptions we will show that the algorithm is guaran-

teed to converge to the optimal solution and ultimately achieves a

quadratic rate of convergence.

This paper is organized as follows. In Section 2 we will for-

malize the problem at hand and introduce notations. In Section 3
we describe the actual algorithm whereas in Section 4 we present

experimental results obtained by computer simulations. Finally, in

Section 5, we draw conclusions.

2. PROBLEM FORMULATION

Consider the situation where we have to localize some sources

(e.g. loudspeakers) s1, . . . , sN and receivers (e.g. microphones)
r1, . . . , rM , possibly randomly distributed in a d-dimensional space.

Without loss of generality, we will assume N ≥ M . Moreover, let

τj and δi denote the onset time of source sj ∈ R
d and internal delay

of receiver ri ∈ R
d, respectively. With this, the measured TOA of

the event generated by source sj at receiver ri is given by

tij =
‖ri − sj‖

c
+ τj + δi, (1)

where ‖ · ‖ denotes the Euclidean norm, c is the sound velocity and

we assume the measurements are noise free. We will discuss the
effect of measurement errors later in Section 4. In this work we

will assume that the source onset times are known a-priori (at least

with respect to a reference source), so that we can include them in

the TOAs tij . This assumption is met when we generate the source
signals at known time instances, for example by using periodically

generated wavelets [24]. Hence, without loss of generality, we will

assume τj = 0 for all j. With this, the inter sensor distances satisfy

(assuming c = 1)

‖ri − sj‖
2 = (tij − δi)

2, for all i, j.

Subtracting the corresponding equations for i = 1 and j = 1 suc-

cessively, we arrive at

(ri − r1)
T (sj − s1) = δi(tij − ti1)− δ1(t1j − t11)

− (t2ij − t2i1 − t21j + t211)/2, (2)

which is bilinear in the sensor and source locations and allows for a

factorization similar to what has been proposed in [14, 15, 17]. To

do so, let R = (r2−r1, . . . , rM −r1) ∈ R
d×(M−1) and S = (s2−

s1, . . . , sN − s1) ∈ R
d×(N−1). Moreover, let T ∈ R

(M−1)×(N−1)

be defined as Ti−1,j−1, = −(t2ij − t2i1 − t21j + t211)/2 for i =

2, . . . ,M, j = 2, . . . , N , W ∈ R
M×(N−1) as Wi,j−1 = tij − ti1

for i = 1, . . . ,M, j = 2, . . . , N , and

Δ(δ) =

⎛
⎜⎜⎜⎜⎝

−δ1 δ2 0 · · · 0

−δ1 0 δ3
...

...
...

. . . 0
−δ1 0 · · · 0 δM

⎞
⎟⎟⎟⎟⎠ ∈ R

(M−1)×M , (3)

where δ = (δ1, . . . , δM )T ∈ R
M×1. With this we can express (2)

as

RTS = T +Δ(δ)W. (4)

A key observation in the localization problem is that, in the absence

of measuring errors, the matrix RTS has rank r, where r ≤ d de-

notes the dimension of the linear manifold the sensors are located in.

As a consequence, RTS has a singular value decomposition given

by

RTS = UΣV T ,

with U ∈ R
(M−1)×r, V ∈ R

(N−1)×r and Σ ∈ R
r×r , which de-

termines R up to a r × r invertible matrix. That is, the receiver

locations are given by R = (UC)T where the matrix C can be ob-
tained by non-linear optimization [14, 15] or, in the case one source

is co-located with one of the receivers, by least-squares approxima-

tion [15]. In the case where the sources are located in the same linear

manifold the receivers are located in, the source locations are given

by S = C−1ΣV T . Note that the locations thus obtained are unique
up to a unitary transform (rotation, reflection) and translation. In

order to determine the sensor positions, we first need to determine

the internal delays δ after which we can compute R and S using the

method described above.

3. ESTIMATING INTERNAL DELAYS

As mentioned before, the matrix RTS has rank r. As a consequence,

the unknown time delays can be found by searching for δ ∈ R
M

such that T+Δ(δ)W is of rank r. In [17], the delays are found by an

alternating minimization procedure involving rank-r approximation
by truncated singular value decomposition followed by least-squares

optimization of δ to enforce the structure (4). In [19], the rank reduc-

tion is obtained by solving a regularized nuclear norm minimization

problem, where the structure (4) is enforced by introducing proper

constraints to the set of feasible solutions. Solving the unknown in-
ternal delay problem using alternating minimization or truncated nu-

clear norm regularization can be very slow and can easily end up in

local minima. In this paper we solve the above mentioned problem

by finding a rank-r approximation of RTS that preserves its specific
structure by using a data fitting technique based on structured total

least squares [21, 22, 23].

Rank approximation problems have an analytic solution in

terms of the singular value decomposition (SVD). The optimal so-
lution is given by the Eckart-Young-Mirsky theorem [25] which

states that the best rank-r approximation of a matrix X hav-

ing SVD X = UΣV T is given by Xr = UΣrV
T , where

Σr = diag(σ1, . . . , σr, 0, . . . , 0) is obtained from Σ by set-

ting the singular values σn = 0 for n > r. A problem that is
closely related is the total least squares (TLS) problem [26]. Given

A ∈ R
m×r, B ∈ R

m×n , m > r, we would like to find X ∈ R
r×n

that minimizes error matrices E and R for A and B, respectively.

That is, we want to find

argmin
X,E

‖[E R]‖F , (5)

where R = (A+E)X −B. The matrix [A+E B+R] is rank de-

ficient since B+R ∈ range(A+E) and the minimum perturbation

[E R] (in the Frobenius-norm sense) is given by [26]

[E R] = −

p∑
i=r+1

σiuiv
T
i ,

where σ1, . . . , σp, p = min (m,n+ r), are the singular values of
[A B] and ui, vi are the corresponding left and right singular vec-

tors, respectively. As a consequence, the rank deficient matrix [A+
E B +R] can be expressed as

[A+ E B +R] =

r∑
i=1

σiuiv
T
i ,
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which is the best rank-r approximation of [A B] by the Eckart-

Young-Mirsky theorem. The structured total least norm (STLN) is
an extension to TLS in the sense that it permits a known structure in

[A B] to be preserved in [A+E B+R]. Requirements of this type

are important in, for example, system identification problems, where

the matrix [A B] has Toeplitz or Hankel structure. In this section,

we will use STLN to find a low-rank approximation of T +Δ(δ)W
that preserves its specific structure.

In order to find a rank-r matrix that is of the form (4), we write

T = [A B], where A ∈ R
(M−1)×r, B ∈ R

(M−1)×(N−1−r) and

W = [F G], where F ∈ R
M×r, G ∈ R

M×(N−1−r). Since both

T and W are given (they contain the measured TOAs), the pertur-

bation matrix for T is given by EW where E(δ) is of the form
(3). We will assume that T and W have full rank and, in addition,

that rank(A) = rank(F ) = r. With this, our structured rank-r
approximation problem can be expressed as a constrained minimiza-

tion problem given by

min
X,δ

‖EW‖F ,

subject to (A+ EF )X = B + EG.
(6)

In order to solve (6), we need the precise relation between E and δ.
Let Pi ∈ R

M×M , i = 1, . . . ,M − 1, be defined as

Pi(j, k) =

{
1, if E(i, k) = δj ,

0, otherwise,

so that E = (PT
1 δ, . . . , PT

M−1δ)
T . As a consequence, we have

‖EW‖2F = ‖δT (P1W, . . . , PM−1W )‖22

= δTZδ,

where Z =
∑M−1

i=1 PiWWTPT
i . Since W has full rank M , we

conclude that ‖EW‖2F ≥ 0 with equality if and only if E = O,

and thus δTZδ ≥ 0 with equality if and only if δ = o, where

O and o denote the zero element in R
M×(M−1) and R

M , respec-
tively. Hence, Z � 0 (positive definite) and symmetric having an

eigenvalue decomposition QΛQT with Q unitary and Λ � 0. As

a consequence, Z has a (unique) decomposition Z = DTD with

D = QΛ
1

2QT � 0 symmetric. With this, (6) can be expressed as

min
X,δ

‖Dδ‖2,

subject to (A+ EF )X = B + EG.
(7)

By introducing a sufficiently large penalty value ω, we can solve (7)

by minimizing the (non-convex) unconstrained problem

min
X,δ

∥∥∥∥ Dδ
ωvec(ρ(X, δ))

∥∥∥∥
2

, (8)

where ρ(X, δ) = B +EG− (A+EF )X and vec(·) is the vector-

ization operator; it stacks all columns of its input argument to form

a single column vector.
Solving (8) can be stated as minimizing the differentiable func-

tion ξ given by

ξ =
1

2
‖Dδ‖22 +

ω2

2
‖vec(ρ(X, δ))‖22.

The first-order optimality condition for a (local) minimum of

(8) is that the gradient of ξ with respect to the vector variables

δ and vec(X) vanishes. In order to compute the gradient, we

need to express EFX and EG in terms of δ explicitly. Let
Z = (z1, . . . , zn) ∈ R

M×n for some n > 0. We then have

Ezi = (PT
1 δ, . . . , PT

M−1δ)
T zi

= (P1zi, . . . , PM−1zi)
T δ

= Θziδ,

so that vec(EZ) = ΘZδ with ΘZ = (ΘT
z1 , . . . ,Θ

T
zn)

T . Moreover,
let q = N − 1 − r and diagq(Z) denote a block-diagonal matrix

with q block-diagonal elements Z. With this, vec(ρ(X, δ)) can be

expressed as

vec(ρ(X, δ)) = vec(B) + ΘGδ − diagq(A+ EF )vec(X),

= vec(B) + ΘG−FXδ − diagq(A)vec(X).

Hence, the gradient of ξ is given by

∇
δ
ξ = DTDδ + ω2ΘT

G−FXvec(ρ(X, δ)),

∇
vec(X)

ξ = −ω2diagq(A+ EF )T vec(ρ(X, δ)),

or, equivalently, by

∇ξ =

(
∇
δ
ξ

∇
vec(X)

ξ

)
= Jξ(X, δ)T

(
Dδ

ωvec(ρ(X, δ))

)
, (9)

where Jξ(X, δ) is the Jacobian matrix of ξ given by

Jξ(X, δ) =

(
D O

ωΘG−FX −ωdiagq(A+ EF )

)
.

We want to find X and δ such that (9) is zero, which can be done

iteratively using the Gauss-Newton method. In that case, the steps
Δδ and ΔX towards the minimum are given by

Jξ(X, δ)TJξ(X, δ)

(
Δδ
ΔX

)
= −Jξ(X, δ)T

(
Dδ

ωvec(ρ(X, δ))

)
,

(10)
where we can start the iterations with initial values E = 0 and X =
A+B, where A+ denotes the pseudo-inverse of A. Despite the fact

that only first-order derivatives are used, the Gauss-Newton method

will ultimately achieve a quadratic rate of convergence [27]. It can be
shown [24] that under reasonable assumptions (W having full rank

and rank(A + EF ) = r) JT
ξ Jξ � 0, which implies that (10) has a

unique solution which will be zero if and only if the left-hand side

of (10) is zero. Hence, convergence of the algorithm (Δδ,ΔX →
0) is equivalent to reaching a (local) minimum of ξ. The resulting

algorithm for solving (8) is summarized in Algorithm 1.

Some remarks are in place here. First of all, the fact that JT
ξ Jξ �

0, regardless of the values of X and δ, implies that if ‖ρ‖F is suffi-

ciently small with respect to ω, we have that the Hessian matrix of ξ
∇2ξ � 0 for all X, δ [27], and the algorithm converges to the global

minimum at a quadratic rate of convergence. In practical situations
this requirement is always met since ρ(k), the residual at iteration k,

satisfies ‖ρ(k)‖F ≤ ‖ρ(0)‖F = ‖B + EG − (A + EF )A+B‖F
which will be relatively small for practical values of ω 	 1. Sec-

ondly, the assumptions for which JT
ξ Jξ � 0 hold, namely W having

full rank and rank(A+EF ) = r, are generally satisfied in practical

situations since both W,A and F contain measured TOAs and can

be made rank deficient only by special construction.
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Algorithm 1 Gauss-Newton method for solving (8).

Set E = 0, δ = o.

Compute X = A+B and ρ(X, δ) = B + EG− (A+ EF )X .

while (‖Δδ‖+ ‖ΔX‖) > threshold do(
Δδ
ΔX

)
= J+

ξ (X, δ)

(
Dδ

ωvec(ρ(X, δ))

)
;

δ := δ +Δδ;
X := X +ΔX;

Construct E from δ and ΘG−FX from X;

Compute ρ(X, δ) and update Jξ(X, δ);
end while

STLS AM [17] TNNR [19]

τ (s) ‖δ − δ̂‖22 τ (s) ‖δ − δ̂‖22 τ (s) ‖δ − δ̂‖22
0.03 6.8 10−17 5.46 1.0 10−12 x x

0.03 4.2 10−14 5.12 1.0 10−12 32.57 8.2 10−13

0.03 1.6 10−13 1.05 1.0 10−12 11.00 3.3 10−13

0.03 9.7 10−13 x x 4.79 7.7 10−13

0.03 7.1 10−18 0.60 1.0 10−12 5.23 7.1 10−13

0.04 8.6 10−16 0.97 1.0 10−12 5.47 5.8 10−13

0.02 5.7 10−20 1.63 1.0 10−12 5.74 8.8 10−13

0.08 8.7 10−15 1.16 1.0 10−12 14.97 8.5 10−13

0.03 3.2 10−14 2.70 1.0 10−12 x x

0.02 2.1 10−16 0.52 1.0 10−12 6.06 3.9 10−13

Table 1. Convergence results for the STLN, alternating minimiza-
tion (AM) [17] and truncated nuclear norm regularization (TNNR)

[19] algorithm.

4. EXPERIMENTAL RESULTS

In this section we present experimental results obtained by computer

simulations. The first experiment compares the convergence behav-
ior of the proposed method to the performance of the alternating

minimization (AM) approach presented in [17], and the truncated

nuclear norm regularization (TNNR) algorithm of [19]. To do so,

we randomly distributed 7 receivers and 25 sources uniformly in a

room of dimensions 4×4×2.5 m. For each receiver, internal delays
are generated according to a uniform distribution over the time inter-

val [0, 100] ms. The sound velocity was set to c = 343 m/s and the

penalty value ω was chosen to be 109. Table 1 shows the results of

10 such experiments for the proposed structured total least squares
(STLS) algorithm, the AM algorithm, and the TNNR algorithm. For

each algorithm the total execution time τ (s) (left column) and the

resulting error ‖δ − δ̂‖22 (right column) are presented. In order to

make a fair comparison between the methods, we stopped the itera-

tions whenever the error in δ is less that 10−12. The reason that the

STLS results have a much higher accuracy than 10−12 is because
they only took 5-10 iterations, each iteration improving the result at

a quadratic rate. The AM and TNNR algorithm, on the other hand,

typically take a few thousands of iterations. In some cases, the AM

and TNNR algorithm did not converge within the maximum number
of allowed iterations (which was set to 100.000), which is indicated

by the symbol x in the table. Clearly, the STLN algorithm has supe-

rior convergence properties as compared to both the AM and TNNR

algorithm where we have a gain in execution time of a factor larger

than 100.

The second experiment shows the sensitivity of the proposed

method to measurement errors. To do so, we assume that measure-

ment errors are due to a finite sampling rate of the sensor hard-
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2

Fig. 1. Accuracy of the internal delays (top plot) and location (bot-

tom plot) as a function of sampling frequency.

ware. That is, we can measure the TOAs up to an accuracy of

±Ts/2, where Ts denotes the sampling period. We randomly dis-

tributed 8 receivers and 15 sources uniformly in a room of dimen-

sions 4 × 4 × 2.5 m, where we co-located the first source with
one of the receivers. This is done since in that case there exists a

closed-form expression for the source and receiver locations so that

we exclude possible errors introduced by the non-linear optimiza-

tion needed in case we did not co-locate one of the sources. For each
receiver, internal delays are generated according to a uniform distri-

bution over the time interval [0, 10] ms and the sound velocity was

set to c = 343 m/s. The measured TOAs are then computed as

tij =
‖ri − sj‖

c
+ δi + νij ,

where the measurement errors νij are drawn randomly from a uni-

form distribution over the interval [−Ts/2, Ts/2]. The locations of

sources and receivers were computed using the method described in

[15]. Figure 1 shows the results (averaged over 100 realizations) in
terms of the accuracy of the location (top plot) and the accuracy of

the internal delays (bottom plot) and as a function of sampling fre-

quency where the error bars indicate the standard deviation. At a

sampling frequency of fs = 48 KHz, the average error in sensor
location is less than 0.6 mm (standard deviation less than 0.4 mm).

5. CONCLUSIONS

In this paper we considered the estimation of unknown internal

delays in time-of-arrival measurements for localization of multiple

sensors. In order to localize the sensors properly, the internal delays
need to be estimated accurately. Existing methods for solving this

problem are based on alternating minimization or the alternating

direction method of multipliers, which both are known to converge

slowly to accurate solutions. As an alternative, we proposed a
method based on structured total least squares. We showed that un-

der reasonable assumptions the algorithm is guaranteed to converge

to the optimal solution and ultimately achieves a quadratic rate of

convergence. Experimental results based on computer simulations
showed the superior convergence behavior of the algorithm; the

execution time is less than 1% of the execution time of existing

methods while attaining an even higher accuracy.
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