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ABSTRACT 

 

This paper presents a novel approach to categorize dolphin 

whistles into various types. Most accurate methods to 

identify dolphin whistles are tedious and not robust, 

especially in the presence of ocean noise. One of the biggest 

challenges of dolphin whistle extraction is the coexistence 

of short-time duration wide-band echo clicks with the 

whistles. In this research a subspace of select orientation 

parameters of the 2-D Gabor wavelet frames is utilized to 

enhance or suppress signals by their orientation. The result 

is a Gabor image that contains a noise free grayscale 

representation of the fundamental dolphin whistle which is 

resampled and fed into the Sparse Representation Classifier. 

The classifier uses the 1� -norm to select a match.  

Experimental studies conducted demonstrate: (a) a robust 

technique based on the Gabor wavelet filters in extracting 

reliable call patterns, and (b) the superior performance of 

Sparse Representation Classifier for identifying dolphin 

whistles by their call type. 
 

Index Terms— Gabor Wavelets, Sparse Representation 

Classifier, Whistle Classification.  

 

1.  INTRODUCTION
1
 

 

Gabor wavelets [1,2] have been used to extract robust feature 

for applications such as fingerprint recognition [3], texture 

segmentation [4], and handwritten numerals recognition [5]. 

The optimality of Gabor wavelets for extraction of local 

features can be explained from three aspects: 1) the receptive 

fields of simple cells in the visual cortex are very similar to 

the shapes of Gabor wavelets [6], 2) local spatial frequencies 

can be measured optimally by mathematical means [7], and 

3) Gabor wavelets can yield distortion tolerant feature spaces 

for pattern recognition tasks. Facial images used for 

recognition [8] are dense in the image frame; i.e., with proper 

cropping, most of the picture is the face. The focus of this 

paper is to classify dolphin whistles by their types, types 

being associated with the shapes of the contours in the time-

frequency plane. It is argued by marine mammal biologists 

that messages are encoded in whistle types. The classifier we 

attempt to adopt is the Sparse Representation Classifier 

(SRC) [8] which, under hypothetical conditions, requires no 

feature extraction. The SRC, developed for face recognition, 
 

 

is based on the premise that if there exists a large dictionary 

of training data that consists of m sample faces for each 

subject and there are M subjects, then a test face is sparsely 

represented in the dictionary if a) it can be reconstructed 

through its projections on the associated m training faces, 

and b) if m ≪ Mm. This one sentence description is over 

simplified, nevertheless captures the essence of the SRC.  In 

[8] the authors show that if sparse representation accurately 

models the data then the exact nature of the features is no 

longer critical as long as they are adequate in quantity.  The 

sparsity exploited in the method is derived from the 

compressive sensing theory [9, 10, 11] and relies on the 

training data set to form a near complete, or over complete, 

dictionary.  Claims of both the liberal choice of features and 

the robustness to occlusion are welcome improvements to the 

classification of not only images, but also the time-

evolutionary spectral representation of non-stationary 

temporal signals.  Image processing tools may be applied to 

find spectrogram-based features that model short or long-

term spectral dynamics of signals.  For instance, 2-D spectro-

temporal filters have been employed on Mel-scale 

spectrogram patterns for automatic speech recognition using 

the SRC technique resulting in an impressive decrease of 

28% in word error rate [12, 13].  

Application of the SRC to categorize dolphin whistles 

by their types requires some preprocessing that ensures that a 

whistle is adequately represented by its projections on the 

training whistles in its category.  In the face recognition 

problem studied in [8], the authors crop the facial images 

until the face covers the entire image and there is no space in 

the image, that is, the face is dense in the image.  

Spectrograms have been used as images [14] to classify 

dolphin vocalizations.  As can be seen in Fig. 1, the whistles 

are not dense on the time-frequency plane and they are 

subject to not only ocean noise but also interference of the 

echo-clicks.  Echo clicks are impulsive signals that dolphins 

use for navigation. They are frequently produced 

simultaneously with whistles and they appear as vertical 

striations in the spectrogram. Clearly the equivalent of 

cropping of facial images cannot be applied to ensure 

adequate representation of whistles by others in their own 

category. We propose a method based on Gabor wavelet 

filters that generate a simple binary image (see Fig. 4) of the 

fundamental whistle. The Gabor image is generated by the 

application of Gabor wavelets with selective orientation 
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parameters. The method not only suppresses the echolocation 

clicks but also generates whistle images that form,   from a 

small number of training data, a set of near complete 

exemplars of their own category. It is shown in the paper that 

Gabor images used as feature vectors to SRC produce 

superior classification performance for identification of 

dolphin whistles by their type. 

The remainder of the paper is organized as follows.  

The characteristics of the dolphin vocalization data are 

described in Section 2. Gabor wavelets and SRC classifier 

are outlined in Sections 3 and 4, respectively. Section 5 

presents the experimental results along with discussion.  

Finally, we conclude the paper in Section 6. 

 

2.  BACKGROUND INFORMATION 

 

Dolphins generate various types of sounds such as whistles, 

clicks, pulsed tones, and noise. Whistles consist of 2-4 

narrow band signals with harmonically related, time-varying 

frequencies [15]. They are believed to be mostly for the 

purpose of communication while echolocation clicks are 

short-time wide-band bursts emitted for object detection and 

distance measurement. Hydrophone recordings are often 

contaminated with abundant and diverse noise. Spectrograms 

in Fig. 2 show four types of whistles embedded in competing 

trains of wide-band pulses. The classification of whistles 

according to their type can be described by the manner the 

fundamental frequency changes over the time as illustrated 

clockwise from the top left in Fig. 2: upswing, convex-up, 

convex down and up-and-down [16]. We refer to them as 

Class 1 through Class 4, respectively. The spectro-temporal 

filters are designed to limit the frequency range to 4 - 16 kHz 

and window the whistle into the appropriate time range. In 

this research, the spectrograms have been built with 13 ms 

Hamming windows and 50% overlap. 

In our previous paper [17], the preprocessing involves 

spectral denoising to remove the vertical striations due to 

echolocation clicks followed by a contour extraction 

algorithm based on spectral peak picking. Then two sets of 

feature vectors known as Fourier descriptors (FDs) and time-

frequency parameters (TFPs) consisting of minimum, 

maximum, start, and end frequencies, frequency range, time 

duration and number of inflection points were extracted from 

the contour. Derivation of both sets of features requires 

tedious, and time consuming computation. However, 

application of Gabor wavelets eliminates such a need. 

 
3.  GABOR WAVELETS 

 

Gabor wavelets are capable of modeling two-dimensional 

receptive field profiles encountered experimentally in 

cortical simple cells, which captures their salient tuning 

properties of spatial localization, spatial orientation and 

spatial-frequency selectivity. The parameterized family of 2-

D Gabor filters [18,19],  which is a Gaussian kernel function 

modulated by a sinusoid plane wave, is defined as follows: 
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where µ and ν correspond to the orientation and scale of 

Gabor filter, z = (x, y), and .  denotes the norm operator.  

The wave vector ,k µ ν can be defined as: 
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ν = and Nµφ πµ= , where 
max

k  and f are 

maximum frequency and spacing factor between kernels in 

the frequency domain, respectively, and N is number of 

orientations. 

To spot local patterns in the image, the Gabor wavelets 

at four scales {0,1,2,3}ν =  and eight orientations 

{0,1,...,7}µ = were used. The following values of the 

parameters have been chosen experimentally for the best 

performance:σ π= , 
max

2k π=  and 2f =  . Fig. 2(a) 

and 2(b) show respectively real components and magnitudes 

of Gabor kernels at different orientation and scales. 

The Gabor wavelet representation is the convolution of 

the spectrogram with a family of Gabor kernels, which is 

defined as follows: 

 , ,( ) ( ) ( )W z I z zµ ν µ νψ= ∗   (3) 

where I(z) denotes the spectrogram image, and * represents 

the convolution operator. Each convolution output in (3) 

exhibits the characteristics of spatial locality, and scale and 

orientation selectivity. Since Wµ,ν (z) is a complex function, 

the magnitude response is used for feature representation. 

Conventionally, magnitude of each output is vectorized as a 

column (or row) and then all vectors are concatenated to 

form a feature vector. However, in this paper, a different 

approach is taken. In our method, all 32 convolution outputs 

in (3) are summed up to obtain a single complex image. 

Then its normalized magnitude is computed to form the so-Fig. 1. Spectrograms of four distinct dolphin whistles 
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called “Gabor image”. Subsequently, each Gabor image is 

vectorized and placed in a dictionary matrix U, which is 

basically a data set in the feature space. 

 

4. SPARSE REPRENTATION CLASSIFIER 

 

The application of compressive sensing to classification has 

been reported in [8] where sparse representation of the test 

sample is determined using the training data. A dictionary  

U = [U1,U2,…,Ud]∈
m n×
� is formed by concatenating classes 

Ui ∈
im n×

� whose columns consist of training vectors { k

iu , 

k=1,2,…,ni}. The parameters d, n = n1+n2+…+nd and m 

refer to the number of classes, total number of whistles in 

the dictionary, and number of samples per whistle, 

respectively. The hypothesis is that a test sample m
y ∈ �

from the 
thi class can be represented as a linear combination 

of training samples of the same class.  If the representation 

is exact, then the coefficient vector α∈
n
�  in y Uα=  is 

i
n n<<  sparse, meaning that all elements should be zero but 

those associated with the same class. An algorithm can be 

applied to obtain the solution under the minimum 1� -norm. 

However, there is no guarantee that α will have the expected 

form since the test sample y from class i may not necessarily 

be orthogonal to vectors from other classes. The following 

model introduces the constraint to establish a bound on the 

residual energy as: 

1 2
arg min subject to y Uα α α ε= − ≤           (4) 

with an error tolerance 0ε > . The above equation anticipates 

the noisy case of cross correlation with the “out of class” 

training vectors and selects the class that also satisfies the 

residual constraint of the measurement set. The success of 

the classifier relies strongly on the effective sparseness of 

the coefficient set of a test vector. If the test vector belongs 

to class i, then the coefficients should be concentrated in the 

entries corresponding to the class. Since the way of 

determining the coefficients is an inner product, the 

existence of a dictionary vector that is a near match to the 

test vector is crucial. For this reason, the dictionary matrix 

must be of a sufficiently size and the noise component of the 

vectors must be uncorrelated to the signal component and 

white for optimal results in terms of the residual. The signal 

component of dolphin whistles are narrow band (cf. Fig. 1), 

and there are many competing spectral structures such as the 

wide band echolocation clicks and the monotone 

anthropomorphic noise (horizontal striations). Gabor 

features are capable of feeding the classifier with 

distinguishing information for the recognition of various 

whistle types even in the present of unwanted interference. 

 

5.  RESULTS AND DISCUSSION 

 

Recordings of free-ranging bottlenose dolphins from the 

resident Sarasota Bay located in north-west of Florida were 

made nearly annually during brief capture-release events 

[20, 21]. Custom-built suction-cup hydrophones were 

attached on the forehead of each individual. Thus the signal-

to-noise ratio and general background noise was similar in 

all the recordings. The hydrophones were not calibrated 

because amplitude values were not being measured. 

Whistles were recorded onto various stereo-cassette or 

video-cassette recorders available on the market at the time. 

In this work, features of dolphin whistles extracted from 

spectrogram images by Gabor wavelets are fed to the SRC 

algorithm to distinguish various dolphin whistle types. To 

evaluate our algorithms, a collection of 100 bottlenose 

dolphin whistles were processed of types one to four. Half 

of this collection was randomly used for training and the 

remaining half for testing. All the recordings were sampled 

at 80 kHz and band-pass filtered between 4 kHz and 16 kHz 

to restrict the input to the fundamental whistle. The frame 

length of 1024 samples with 50% overlap followed by 

cropping to the pass-band frequency range builds 

spectrograms with 615 frequency bins and 21-42 temporal 

bins because duration of different whistles is not always 

equal. To create a dictionary matrix for the classifier, the 

original spectrogram was resized to a smaller yet 

informative size 30×30 in order to reduce the amount of data 

to be processed without loss of salient information. In the 

next step, 32 Gabor wavelet kernels were convolved with 

the resized spectrograms individually and their outputs are 

summed up to obtain the Gabor images whose normalized 

magnitudes are concatenated column-wisely to create the 

Fig. 2. (a) The real part of the Gabor wavelets at different scales 

and orientations. (b) The magnitude of the Gabor wavelets at  

four scales. 
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columns of matrix U. Fig. 3 illustrates the derived Gabor 

images of four distinct whistles. These choices were

empirically selected after the consideration of trade

between the feature vector length and recognition accuracy.

Experiment results in Table 1show the confusion matrix of 

SRC using features obtained by Gabor wavelets, with an 

overall classification accuracy of 98%. In this case, just one 

misclassification was occurred in a very difficult case 

involving a third-class whistle demonstrated

observed, even human eyes may fail to recognize the type of 

whistle, which shows the effectiveness and robustness of 

both the Gabor wavelets at whistle detection and 

representation, and the SRC technique at recognizing 

different whistle types even when some outliers are present 

in the Gabor images of Fig. 3. In fact, one of the most 

important factors for the success of SRC is that whistles 

being present in the Gabor images are sparse and this 

characteristic matches the features well with the proposed 

classifier. 

Fig. 3. The Gabor images of different whistle types 

Fig. 4. Third-class misclassified whistle (a) Original spectrogram 

(b) Gabor image 

To evaluate the performance of the Gabor wavelets

SRC combination, two additional feature extraction 

techniques, named Time-Frequency Parameters (TFPs) and 

Fourier Descriptors (FDs) [17], were used in place of Gabor 

wavelets. Tables 2 and 3 present the confusion matrices of 

SRC using FDs and TFPs, respectively. An accuracy of 88% 

implies that six whistles were misclassified; refer to Table 2. 

Table 3 reveals that four misclassifications occurred with 

TFP features, leading to an accuracy of 92%. The 

comparison of classification results reveals the capability of 

. Fig. 3 illustrates the derived Gabor 

These choices were 

ly selected after the consideration of trade-off 

length and recognition accuracy. 

confusion matrix of 

SRC using features obtained by Gabor wavelets, with an 

overall classification accuracy of 98%. In this case, just one 

misclassification was occurred in a very difficult case 

demonstrated in Fig. 4. As 

recognize the type of 

whistle, which shows the effectiveness and robustness of 

both the Gabor wavelets at whistle detection and 

representation, and the SRC technique at recognizing 

utliers are present 

. In fact, one of the most 

important factors for the success of SRC is that whistles 

being present in the Gabor images are sparse and this 

characteristic matches the features well with the proposed 

 
types  

 
(a) Original spectrogram 

the Gabor wavelets and 

two additional feature extraction 

Frequency Parameters (TFPs) and 

], were used in place of Gabor 

Tables 2 and 3 present the confusion matrices of 

SRC using FDs and TFPs, respectively. An accuracy of 88% 

were misclassified; refer to Table 2. 

Table 3 reveals that four misclassifications occurred with 

TFP features, leading to an accuracy of 92%. The 

comparison of classification results reveals the capability of 

Gabor wavelets for extracting relevant feature

whistles in the spectrogram. We believe that since Gabor 

features extracted from whistle contours are sparse in 

spectral domain, it meshes well with SRC because sparsity 

is an important property of SRC based on the compressive 

sensing principles. The resulting images obtained after 

application of Gabor wavelets on whistle spectrograms in 

Fig. 3 illustrates the sparsity of Gabor images. 

 
1st class 

(%) 

2nd class 

(%) 

3rd

1st class 100 0 

2nd class 0 100 

3rd class 0 0 

4th class 0 0 

Table 1. Confusion matrix of SRC + Gabor

 
1st class 

(%) 

2nd class 

(%) 

3rd

1st class 100 0 

2nd class 0 94 

3rd class 33 0 

4th class 0 0 

Table 2. Confusion matrix of SRC + FDs

 
1st class 

(%) 

2nd class 

(%) 

3rd

1st class 85 15 

2nd class 0 100 

3rd class 0 0 

4th class 0 0 

Table 3. Confusion matrix of SRC + TFPs

 

6.  CONCLUSION

 
A new procedure has been proposed

feature extraction method centered at

compressive-sensing based technique called Sparse 

Representation Classifier, for the classification of dolphin 

whistles by call type. It has been shown that

approach avoids the need for tediou

while achieving a superior classification 

comparison with several other techniques. 

to mention that an earlier paper by the authors [2

that a feature extraction method named Local Binary 

Patterns (LBP) had been employed for classification of 

bottlenose whistles by type. The 

obtained from the combination of LBP and 

is comparable with that of Gabor and SRC.

we are eager to test the proposed approach on large data sets 

of a variety of marine mammal vocalizations.

Gabor wavelets for extracting relevant features of dolphin 

whistles in the spectrogram. We believe that since Gabor 

features extracted from whistle contours are sparse in 

spectral domain, it meshes well with SRC because sparsity 

is an important property of SRC based on the compressive 

es. The resulting images obtained after 

application of Gabor wavelets on whistle spectrograms in 

3 illustrates the sparsity of Gabor images.  

rd class 

(%) 

4th class 

(%) 

0 0 

0 0 

92 8 

0 100 

Confusion matrix of SRC + Gabor 

rd class 

(%) 

4th class 

(%) 

0 0 

0 6 

58 9 

0 100 

FDs  

rd class 

(%) 

4th class 

(%) 

0 0 

0 0 

83 17 

0 100 

TFPs 

CONCLUSION 

procedure has been proposed, which combines a 

extraction method centered at Gabor wavelets and a 

sensing based technique called Sparse 

the classification of dolphin 

It has been shown that the proposed 

the need for tedious preprocessing steps 

superior classification performance in 

with several other techniques. It is worthwhile 

to mention that an earlier paper by the authors [21] reported 

a feature extraction method named Local Binary 

employed for classification of 

The accuracy performance 

the combination of LBP and SVM classifier 

comparable with that of Gabor and SRC. For future work, 

approach on large data sets 

of a variety of marine mammal vocalizations. 
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