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ABSTRACT

We present an inference framework for automatic detection of acti-
vations of home appliances based on voltage envelope waveforms.
We cast the problem of appliance detection and recognition as an
inference problem. When the activation signatures are known, the
problem reduces to a simple detection problem. When the activa-
tion signatures are unknown, the problem is reformulated as a blind
joint delay estimation. Due to the non-convexity of the negative log-
likelihood, finding a global optimal solution is a key challenge. Here,
we introduce a novel algorithm to estimate the activation templates,
which is guaranteed to yield an error within a factor of two of that
of the optimal solution. We apply our method to a real-world dataset
consisting of voltage waveform measurements of several appliances
obtained in multiple homes over a few weeks. Based on ground truth
data, we present a quantitative analysis of the proposed algorithm
and alternative approaches.

Index Terms— Blind joint delay estimation, detection, home
energy management.

1. INTRODUCTION

Electric supply and demand is becoming a source of concern due to
the increase in home power consumption [1]. Home energy manage-
ment can provide further flexibility in energy demand management.
A system which can learn, monitor, and control home energy usage
patterns is of interest.

Several approaches have been proposed for disaggregated end-
use energy [2]. We focus on the problem of appliance recognition
based on voltage envelope transient responses [3]. To the best of
our knowledge, the use of activation signatures in appliance recog-
nition has only been lightly explored as opposed to complex power
analysis [4], spectral signatures [5], or harmonics of current [6].

A key challenge in this paper is how to blindly recognize a signa-
ture from multiple waveforms, which contain a noisy version of the
appliance activation signature. The time delay estimation problem
has been widely explored. Maximum likelihood (ML) estimation
is commonly used to estimate signal delays under unchanged scale
and shape conditions [7]. In [8], the problem is cast as a blind joint
delay estimation and an iterative procedure for ML is provided. A
different problem setup considering the change of scale and shape
is explored in [9] and [10]. Since the voltage envelope transient re-
sponse changes slightly in scale and shape, we do not consider the
effect of these two parameters in this paper.

Our contributions in this paper are as follows. We provide (i) a
formulation of signature recognition problem as a blind joint delay

estimation; (ii) a novel approximation to the solution of the noncon-
vex ML problem; and (iii) theoretical guarantees on the performance
of the proposed approximation.

2. PROBLEM FORMULATION

Home appliance recognition from voltage envelope measurements
relies on the unique signatures associated with each appliance. To
extract voltage envelope waveforms containing the appliance activa-
tion transient response, a power meter measurement of the appliance
of interest provides a rough interval in which the activation response
is present. Since the precise start time of the activation is unavail-
able, blind joint delay estimation is key to this problem. In our prob-
lem formulation, a set of N signals containing the appliance activa-
tion signature are extracted from training data for each appliance,

yi(t), i = 1, 2, . . . , N, 1 ≤ t ≤ T.

Figure 1 (a)-(c) shows three different templates y1(t) to y3(t) con-
taining the activation signature from the same appliance.
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Fig. 1: Three air-conditioning activation events (a)-(c) and template
detection illustration (d)

Our goal is to detect the presence of an activation signature in
a new (test) signal (see Fig. 1 (d)) using the information from the
training data yi(t) for i = 1, 2, . . . , n and 1 ≤ t ≤ T . We identify
two tasks: (i) detect the presence of a signature in a new signal,
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and (ii) obtain an accurate estimate of the signature present in the
multiple training templates.

2.1. The Detection Problem

We are interested in detecting the presence of a known fixed length
template s(t) in an observed signal. We further assume that s(t) is
nonzero for t = 1, 2, . . . T0 (T0 ≤ T ), i.e., for a portion of the ana-
lyzed signal. If the template is present, we assume that the observed
signal ytest(t) is given by

H1 : ytest(t) = s(t − τ) + B + n(t)

n(t)
i.i.d∼ N(0, σ2), t = 1, 2, . . . , T,

where τ ∈ {0, 1, . . . , T − T0} is an unknown delay, B is a voltage
offset, and n(t) is a zero mean, σ2 variance, additive white Gaus-
sian noise. If the appliance activation template is not present in the
observed signal, the observed signal is given by

H0 : ytest(t) = B + n(t),

where B and n(t) are as defined for H1. Our goal in the detection
problem is to determine which hypothesis was used to produce the
observed signal ytest(t).

2.2. Activation Signature Estimation Problem

Since the template is not available, we have to estimate it from the
training data as described in the beginning of this section.

We assume a collection of voltage envelope waveforms yi(t) for
1 ≤ t ≤ T and i = 1, 2, . . . , N , each containing a single activation
corrupted by noise following the model

yi(t) = s(t − τi) + Bi + ni(t), i = 1, 2, . . . , N 1 ≤ t ≤ T,

where s(t) is the previously defined unknown activation template,
Bi is the voltage offset associated with the ith observed signal, and
ni(t) are iid following N (0, σ2). In this setup, the problem is re-
formulated as a blind joint delay estimation, in which the delayed
template is unknown. Consequently, our goal is to jointly estimate
τ1, . . . , τn, B1, . . . , Bn, and s(t) for 1 ≤ t ≤ T0. Note that all
other values of s(t) are assumed to be zero.

3. INFERENCE SOLUTION FRAMEWORK

In the following section, we present a generalized likelihood ratio
test (GLRT) framework for solving the detection problem and ML
estimation approach for solving the template estimation problem.

3.1. Generalized Likelihood Ratio Test

The GLRT framework is a common and powerful statistical test
method to determine between multiple hypothesis models which in-
volve unknown parameters. The GLRT [11] for observation vector
x is given by:

maxθ1
p(x|H1, θ1)

maxθ0
p(x|H0, θ0)

H1

≷
H0

ρ, (1)

where θ0 and θ1 are the unknown parameters associated with the
statistical model under hypothesis H0 and H1, respectively, and
ρ is the non-negative test threshold. The test can be rephrased in
terms of the negative log-likelihood as minθ1

(− log p(x|H1, θ1))−

minθ0
(− log p(x|H0, θ0))

H0

≷
H1

ρ′, where ρ′ = − log ρ is a real-

valued threshold [11].
Based on the Gaussian model for H0 and H1, we can directly

obtain the detector as a correlation test [11]:

max
τ

T
X

t=1

(ytest(t) − ȳtest(t))(s(t − τ) − s(t − τ))
H1

≷
H0

ρ′′ (2)

where ρ′′ = ρ′σ2 − 1
2

P

t(s(t − τ) − s(t − τ))2). The resulting
detector compares the maximum sample cross-covariance function
to a threshold to determine the presence or absence of the template
s. It is closely related to the well-known matched filter [11, p. 95] in
which a test signal is correlated with a given template.

3.2. Signature Maximum Likelihood Estimation

In order to identify the activation pattern from voltage envelope mea-
surements, we need to estimate the offset parameter bi and the delay
τi for each observed noisy template yi. Following the Gaussian iid
assumption with ni(t) ∼ N (0, σ2), the negative log-likelihood [12]
of the observation can be written as 1

2σ2

P

i,t ‖yi(t) − s(t − τi) −
bi‖2 + const. Hence, the optimization associated with ML is equiv-
alent to the following minimization problem:

min
θ

N
X

i=1

T
X

t=1

‖yi(t) − (s(t − τi) + bi)‖2, (3)

where θ = [τ1, . . . , τn, b1, . . . , bn, s(1), . . . , s(T0)]
T is the vector

of unknown parameters. To perform the minimization, we propose
to eliminate the bi’s, then the s(t) and finally the τi’s. By [12], the

resulting ML estimate of the bi’s is given by b̂ML
i = ȳi − s(t − τi).

Substituting b̂ML
i for i = 1, 2 . . . , n into (3) yields

min
τ,s̃

N
X

i=1

T
X

t=1

(ỹi(t) − s̃(t − τi))
2, (4)

where τ = [τ1, . . . , τn]T , ỹi(t) = yi(t)− ȳi, s̃(t) = s(t)−s(t) and
s̃ = [s̃(1), . . . , s̃(T )]T . Note that

P

t s̃(t) = 0. Next, we exploit
the fact that s(t) = 0 for t /∈ {1, . . . , T0}. Consequently s̃(t) = −s̄
for t /∈ {1, . . . , T0} and (4) can be rewritten as

min
τ,s̃

N
X

i=1

T0
X

t=1

(ỹi(t + τi) − s̃(t))2 +
N

X

i=1

X

t∈T (τi)

(ỹi(t) + s̄)2, (5)

where T (τi) = [1, τi] ∪ [τi + T0 + 1, T ]. Next, if we ex-
pand

P

t∈T (τi)
(ỹi(t) + s̄)2 as

P

t∈T (τi)
(ỹi(t) − ȳiT (τi))

2 +√
T − T0(ȳiT (τi) + s̄)2 then we can rewrite (5) as

min
τ,s̃

(
N

X

i=1

T0
X

t=1

(ỹi(t + τi) − s̃(t))2 +
√

T − T0(ȳiT (τi) + s̄)2) +

N
X

i=1

X

t∈T (τi)

(ỹi(t) − ȳiT (τi))
2. (6)

We construct the (T0 +1)× (T −T0 +1) matrix Yi such that its
kth column given by [yi(k), . . . , yi(k + T0 − 1),

√
T − T0ȳiT (k)]

T

and vector s̃ = [s̃(1), . . . , s̃(T0),−
√

T − T0s̄]
T and rewrite (6) as

min
s̃,τ

N
X

i=1

‖Yieτi − s̃‖2 +
N

X

i=1

φi(τi), (7)
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where φi(τi) =
P

t∈T (τi)
(ỹi(t)− ȳiT (τi))

2 and ek is the canonical

vector with 1 at the kth place and 0 otherwise. Next, we obtain
the ML estimate of s̃ by differentiating (7) with respect to s̃ and
setting to zero. The resulting ML estimate for s̃ is given by s̃ =
1
N

PN
i=1 Yieτi . After substituting the ML estimate of s̃ in (7), we

obtain a minimization only with respect to τ

min
τ

N
X

i=1

‖Yieτi −
1
N

N
X

j=1

Yjeτj‖
2 +

N
X

i=1

φi(τi). (8)

While the resulting minimization involves only τ , it is still non-
trivial. The τi’s are integers and hence the domain of the problem
is non-convex leading to a non-convex optimization problem. Note
that (8) can also be written as

min
τ

1
2N

N
X

i=1

N
X

j=1

‖Yieτi − Yjeτj‖
2 +

N
X

i=1

φi(τi). (9)

In the reformulation of (9), each term in the summation involves
only two delay terms τi and τj . The equivalence between (8) and
(9) is due to the following result. For vectors u1, u2, . . . , un we
have 1

2N

P

ij ‖ui −uj‖2 =
P

i ‖ui − ū‖2 where ū = 1
N

PN
i=1 ui.

This can be proven by expanding both LHS and RHS into the term
P

i ‖ui‖2 − ‖ū‖2.
Denote the number of delays for each τi by M = T − T0. The

computational complexity of minimizing (9) with respect to the de-
lays τ in a brute-force manner is O(MN ) [13]. For example, if
N = 30 and the number of delays is M = 100, then MN = 1060.
This prompts us to propose an approximate solution with signifi-
cantly lower computational complexity. The proposed solution guar-
antees no more than twice of the global minimum achieved by the
objective in (9). This approach is the core contribution of this paper.

3.3. Graph-based ML approximation

The objective in (9) can be viewed as a sum of edge weight in a graph
given by Dij = ‖Yieτi − Yjeτj‖2 and a sum of node penalties
φi(τi). Since the sum runs over all pairs of (i, j), the graph is a
complete graph. We propose to replace the single complete graph by
N bipartite graphs [14] (see Fig. 2). The ith bipartite graph contains
only N − 1 edges placed between the ith node and all other nodes.

complete graph bi-partite graph

Fig. 2: Graphical representation of two approaches: (9) and (11)

To obtain the approximate ML solution τ̂AML, we begin by solving
N minimizations. The ith minimization is given by

τ i = arg min
τ

fi(τ), where (10)

fi(τ) =
N

X

j=1 #=i

`

‖Yieτi − Yjeτj‖
2 + φj(τj)

´

. (11)

Then, τAML = τ i∗ , where

i∗ = arg min
i

fi(τ
i). (12)

Although the objectives fi(τ) differ from our original objective in
(9) they are tightly connected. For both estimators, we establish a
lower and upper bounds:

1
2N

X

i

fi(τ
i) ≤ f(τ∗) ≤ min

i
fi(τ

i).

The bound holds for both τ∗ = τML and τ∗ = τAML. Due to space
limitations, we omit the proof. Since N mini fi(τ

i) ≤
P

i fi(τ
i),

we can further bound the lower bound by 1
2min

i
fi(τ

i). Therefore,

1
2

min
i

fi(τ
i) ≤ f(τML) ≤ f(τAML) ≤ min

i
fi(τ

i).

This sandwich inequality guarantees f(τML) ≤ f(τAML) ≤
2f(τML). This bound suggests that the proposed approach yields
a solution objective within a factor of 2 from the optimal solution
objective.

The main advantage of the proposed algorithms is the relatively
low computational complexity. The minimization in (11) can be im-
plemented as follows. For each of the M values of τi, N − 1 sep-
arate minimizations over M values of τj can be performed yielding
a computational complexity of the order O(M2N). Since this min-
imization is applied for every i, the overall computational complex-
ity is O((MN)2). This is the computational complexity obtained
by comparing every one of M delay windows in every one of N
observed sequences with every one of the M delay windows in all
other N − 1 observed sequences.

4. NUMERICAL EVALUATION

In this section, we evaluate our proposed method and compare it with
Woody’s method [8]. We first deploy our signature estimation pro-
cedure and compute sum of squared errors for both methods. Then
we use the estimated signature to detect activation events of multiple
devices from voltage measurements taken from multiple homes.

4.1. Data Description and Preprocessing

In our experiments, we use the Pecan Street dataset (Source: Pecan
Street Research Institute). The dataset contains four homes of dis-
aggregated, time-sampled electricity usage data with 120 sampling
frequency. The data set includes voltage and apparent power read-
ings for both the whole home and disaggregated household appli-
ances in a period of 25 days. Since the voltage peak to peak (Vpp)
waveform is corrupted by spike noise, we apply a five-tap median
filter to despike the voltage waveforms.

4.2. Experiment Setup

Our goal is to learn the activation signature for each appliance using
the training data and to test the detection performance obtained using
a detector which uses the estimated signature. In our experiment, we
split four home data into training data (in the period 11/17/2012-
11/25/2012 with around 50 activations per appliance) and test data
(in the period 11/26/2012-12/11/2012 with around 80 activations
per appliance). The ground truth (based on the independent mea-
surement from a commercial power meter) regarding the activation
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Fig. 3: Activation patterns of six household appliances from four
homes.

events is obtained by identifying a power increase from 0 to 80 watt
or more.

For the training phase, we obtain activation events from the
training data by extracting a segment yi(t) of T = 1000 samples
around the reported activation time for each event i in the train-
ing dataset. We consider an activation signature window size of
T0 = 700. We use (10)-(12) to find the delay of the activation signa-
ture within each segment. For each segment, we extract the portion
associated with the activation signature and average following (7).
Similarly, we apply the Woody’s method [8] to obtain a signature for
each device. The mean square error (MSE) 1

N

PN
i=1 ‖Yieτi − s̃‖2

is presented in the Table 1.

After the training process, we generate distinct activation pat-
terns of each appliance in each home. In Fig. 3, we present acti-
vation patterns of six appliances in four homes (PS-025, PS-029,
PS-046, and PS-051). Based on the activation patterns estimated
during the training phase, we apply the detector in (2) to the test
data. We apply the detection scheme to each hourly file in a period
of more than ten days and acquire the receiver operating character-
istic (ROC) curve for each appliance in all homes. We present the
area under the ROC curve (AUC) for each of the appliances avail-
able in each of the homes in Table 1. We observe that for most of
the appliances the AUC is over 80%. Additionally, we observe that
for devices which have a distinct single consistent activation pattern
such as air-conditioning, both the proposed method and the Woody’s
method achieve AUC of over 0.9 (e.g., see air-conditioning signature
in Fig. 4(a)). However, we notice that for some of the other appli-
ances, Woody’s method fails to find the activation pattern yielding
a low AUC of 0.5 (e.g., see fridge signature in Fig. 4(b)). More-
over, when a given appliance has more than one activation pattern,
the detection performance degrades for all algorithms tested. The
template obtained by averaging over the multiple activation patterns
may not resemble either of the patterns. Additionally, when one of

the activation signatures is prominent, the average follows it closely.
However, during the test phase, the less prominent activation signa-
tures of a given appliance may not be detected.
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Fig. 4: Template comparison for the proposed method and the
Woody’s method [8].

House ID App. Name MSE. Our
Method

MSE.
Woody’s
Method

AUC Our
Method

AUC
Woody’s
Method

PS-025 Air-Cond. 2517.93 3201.17 0.95066 0.90309
PS-025 Oven 1812.61 3243.28 0.52177 0.38571
PS-029 Air-Cond. 5356.00 3723.36 0.91496 0.88241
PS-029 Fridge 1573.47 4605.86 0.71906 0.30876
PS-029 Furnace 1582.34 2201.17 0.86338 0.39473
PS-029 Dryer 3812.68 7316.96 0.99142 0.55087
PS-029 Microwave 2168.59 5440.45 0.87869 0.47560
PS-029 Oven 1953.54 2323.37 0.91030 0.53450
PS-046 Air-Cond. 1548.87 2366.34 0.84892 0.85404
PS-046 Fridge 1303.00 2142.41 0.49252 0.49213
PS-046 Furnace 623.93 690.28 0.53887 0.55045
PS-046 Oven 4193.05 5024.09 0.91824 0.49346
PS-051 Air-Cond. 2730.66 2569.54 0.91311 0.92936
PS-051 Oven 2115.58 2599.95 0.78501 0.47497

Table 1: MSE for the estimated template and AUC for the proposed
method and for Woody’s method [8]

5. CONCLUSION AND FUTUREWORK

In this paper, we provided a formulation of the problem of auto-
matic detection of electric appliance activation from voltage mea-
surements as a blind joint delay estimation. We presented a GLRT
detection scheme base on activation signatures estimated in the max-
imum likelihood framework. We provided a feasible approximation
for the maximum likelihood estimate and proved that the approxi-
mation produces an objective value (based on the negative log like-
lihood) which is no more than twice the value obtained by the ex-
act maximum likelihood solution. In our experimental study, we
achieved a better detection performance than Woody’s method. For
most appliances, the AUC achieved was over 80%.

One challenge in practice involves multiple activation patterns
which are produced by the same appliance. We are currently fo-
cussing our efforts on models that can account for multiple activa-
tions of a given appliance. Additionally, we are interested in solving
the problem when outliers are present (e.g., spike noise or missing
activations).
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