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Abstract—Power system state estimation (PSSE) constitutes a iterative solver may get stuck at a locally optimal solutidhis
crucial prerequisite for reliable operation of the power grid. A is particularly problematic in the challenging scenariwbere
key challenge for accurate PSSE is the inherent nonlinearity of  the system states change significantly between measurgment

SCADA measurements in the system states. Recent proposals for or the measurements become corrupted by bad data, leaving
static PSSE tackle this issue by exploiting hidden convexity struc- fewer available measurements.

ture and solving a semidefinite programming (SDP) relaxation.

In this work, an online PSSE algorithm based on SDP relaxation Recent proposals mitigate this issue by exploiting hidden
is proposed, which enjoys a similar convexity advantage, while  conyexity structure of the power flow relations [3], [4], [5]
capitalizing on past measurements as well for improved perfor- Specifically, by lifting the state vector to a higher-dimiens

mance. An online convex optimization technique is adopted to : . . o e -
derive an efficient algorithm with strong performance guarantees. space involving symmetric positive semidefinite matrices

Numerical tests verify the efficacy of the proposed approach. can formulate a semidefinite programming (SDP) problem,
which is convex and whose solution often leads to the glgball

optimal solution of the original PSSE problem.
. INTRODUCTION

o . . . Traditionally, the PSSE problem has been often solved in a
Power system state estimation (PSSE) is crucial for rediabl static setup, Wzich ignores tphe dynamics of power systents, a

operation of the power grid. Based on various types of meag, g qoes not exploit the past observatiddgnamicPSSE, on
surements collected at different buses and lines acroggithe the other hand, can enjoy improved reliability, robustress

PSSE aims at recovering unknown system states, which are tia% o
. ' observability, even under bad data and topology errors,edls w
complex voltages at all buses in the network. Accurate PSSE Y pology

" S . . . hiev redi ili 7]. F rm -
critical for detecting instabilities and contingenciesg\enting as achieve state predictability [6], [7]. Faster measurdrup

massive blackout events that can be caused by (:ascad<i=3failudates owing to PMUs facilitate dynamic PSSE, while various
The importance of PSSE will be amplified in the future smartgmart grid challenges make the approach imperative.
grid, where volatility due to renewable resources as well as Similar to the static PSSE, dynamic PSSE has to deal with
aggravated demand due to transportation electrificatidh winonlinearity in measurements. Various nonlinear filtetiech-
pose significant challenges to the grid monitoring, managgm niques such as the extended Kalman filter and the unscented
and control [1]. Kalman filter have been employed to address this issue [[7], [8
However, such approximate nonlinear filtering algorithneym

ffer under severe nonlinear dynamics. Moreover, esitimat
f the possibly non-stationary dynamics of the system is in
elf a challenging issue [6], [9].

In order to perform this key task successfully, installatio
of phasor measurement units (PMUs) has been advocate
PMUs can acquire GPS-synchronized voltage measuremer
at a much higher rate than the existing SCADA system.
However, as PMUs are deployed progressively, it is still |n this work, we do not explicitly commit to a model
essential to incorporate SCADA measurements for redurydanaf the power system state dynamics, but still capitalize on
and robustness of PSSE. the accumulated measurements. An instrumental framework

One of the challenges in PSSE involving SCADA mea—';]Or this purpose 'T online lcon;/ex opt||m|zat|on (Cr)fCO)] which
surements is that the measurements are nonlinear in trensyst as_begn recently popular for real-time machine learning
states. Traditional approaches adopt a weighted nonlieast- applications [10]. In conjunction with convex relaxatiofite

squares formulation, typically solved by Newton-type neme nonlinear PSSE problem, the framework naturally provides a

ical methods [2]. However, since the problem is inherentlyon“ne PSSE algorithm, with strong performance guarantees

nonconvex, there is no guarantee that the solution found is  The rest of the paper is organized as follows. In Section Il,
globally optimal. In fact, depending on the initial poinhet  the static PSSE formulation as well as the SDP relaxation

This work was Supported by NSF grant 1202135, and by the tumsti approach are reviewed. In Section Il the OCO framework
of Renewable Energy and the Environment (IREE)’ at the Uniyersf IS mtro.duced and an online P.SSE a_Igorlthm IS deV.eIOped'
Minnesota, under grant No. RL-0010-13. G. Wang was supgdrtgart by ~ Numerical tests are presented in Section IV. Conclusioes ar
China Scholarship Council. provided in Section V.
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[I. REVIEW OF STATIC POWER SYSTEM STATE B. SDP Relaxation Approach

ESTIMATION _ . :
Problem (6) is nonconvex, and various numerical methods

In this section, the basic formulation of the static PSSEsuch as Newton’s iteration have been employed targeting the
problem is presented, and a solution technique based on SD&cal optima of this problem [2]. Recently, an SDP relaxatio
relaxation recently proposed in [5] is reviewed to lay thebased approach showed much potential to locate a globally
groundwork for our online formulation in Sec. Il optimal solution. The key observation is that upon defining
x = [R(v)7S(v)7]7, which stacks the real and imaginary
parts of vectorv, and lettingX := xx’, one can express

A. Static PSSE Problem Statement measurement functioh,,,(v) as linear inX; that is,

Let N := {1,2,...,N} denote the set of buses in a
transmission network consisting df buses, and letl’ := hm (V) = tr(H,, X) (7)
{(n,n") : n,n’ € N'} represent the transmission lines in the
network. The static PSSE problem is to obtain the complexXor someH,,, € R>V*2N which is a matrix that may depend
voltage estimates of all buses in a power network for a giveron the underlying line parameters. Substituting (7) inty, (6
time based on the measurements acquired at a subset afe obtains an equivalent formulation given by
the buses and lines. Observations on various power system

guantities include: i) the active and reactive powers itgec M

at busn € N, denoted asP, and Q,,, respectively; ii) min Z Wi (2 — tr(H,, X)) (8a)
the active and reactive power flows from busto n’ for R

(n,n') € L, denoted as,,,» and Q,,,,, respectively; and iii) subject toX = 0 (8b)
the voltage magnitudg’, | at busn € NV. Collectively, denote rank(X) = 1. (8c)
such M measurements as := |21, 2o, ..., 2] , Wherez,,

corre;ponds to then-th measurement regardless of its type, proplem (8) is nonconvex due to the rank constraint (8c).
and-" stands for transposition. Given the goal of PSSE is Removing (8c) renders the problem (8a)~(8b) convex. This,
to obtainv := [Vi, V..., Vn]", or V, atalln € NV. in turn, can be shown (using Schur’'s complement lemma) to

The measurementsare nonlinearly related to the unknown P€ €quivalent to an SDP given next, which can be solved very
v. Specifically, letY € CN*N be the admittance matrix of €fficiently [11].

the transmission grid, and:= [i1, is,...,ix]” the vector of . T

injected currents at all buses. Then, Kirchhoff's and Ohm’s minw’ o (9a)

laws yield subject to ~om em — tr(Hp X) <0

i=Yv (1) 2m — tr(H,,, X) —1 — =
d th | injected to nodes A is given b m=1..., M (9b)

and the complex power injected to nodec A is given by X0 (90)
wherea := [y, ag, . .. ,on]T andw := [wy, wa, ... ,wM]T.

where -* denotes complex conjugation. Similarly, the line If the optimal solutionX,,; for (9) has rankl such that

currentsl,,,,» for (n,n’) € £ are given by Xopt = XoptX e, thenxops = [R(vopt)”, S(vept) 7] yields
the globally optimal solutionv,,; for (6) and «?

Lt = Ysn' Vo + Yo (Via — Vir) 3) 9 y op pt (6) X opt

(2 — Bon (Vopt )]+ If rank(X,p) > 1, the best rank- ap-
where y, .- represents the shunt admittance at buasso- Proximation/A,u, can be used, wherg, andu, are the
ciated with line (n,n’). The complex power flow over line largest eigenvalue and the corresponding unit-norm eggetoy
(n,n’) is then given as of Xopt, respectively.

P + ann/ =V :;,n" (4)

Encapsulating the generally linear-quadratic relatiotwken
zm andv throughh,,(-), one obtains the measurement model  Online PSSE aims at capitalizing on the entire measure-
ment history to obtain state estimates of improved accuracy

Zm = b (V) + €y, m=1,2,.... M (5)  at manageable complexity, while at the same time track slow
. . . . variation emerging due to time-varying line parameteradlo

wheree,, is assumed to be zero-mean Gaussian with varnancg; yenewable generations, which contain uncertainty. Byoa

Op, AN mdependent across. Under th_|s model, the static state-space models have been considered along with nanline

PSSE problem is formulated as a weighted nonlinear leasgytering techniques such as the extended and the unscented

IIl. ONLINE POWER SYSTEM STATE ESTIMATION

squares one, given by Kalman filters [6], [7], [8]. In this work, we advocate the
M use of the online convex optimization (OCO) framework [10],
min Z Wiy [2m — hon (V)] (6)  Which does not require an explicit dynamical model, but stil
Vo= provides guaranteed performance. A brief overview of the
OCO framework is first given next, followed by its applicatio
wherew,, := (%)L to an online PSSE formulation.
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A. Online Convex Optimization Models

The OCO model considers a multi-stage game between
a player and an adversary. (In the present setup, the utility
that performs PSSE assumes the role of the player, while
the load and the renewable generators can be regarded as the
adversary.) At time, the player chooses an actid@’ € X,
and subsequently the adversary reveals a convex function
¢ . X — R. As will be specified in the next subsection,
Xt will be the rank-relaxed matrix variable for (8a)—(8b), and
¢’ the quadratic fitting cost. Then, the player suffers the loss
of amountc!(X*). The goal of the player is to minimize the
so-calledregret R.(T) overT stages, defined as

o tisety t . )
R.(T) := tz:; (XY min ; (X) (10)  Fig. 1. IEEE 6-bus test system.
which corresponds to the cost incurred by the player relthe Frobenius, von Neumann and log-det divergences [14]. In
ative to the cost due to a single best actiol” :=  this work, we adopt the Frobenius divergence given by
argminxex »,_, ¢/(X), which is selected with the benefit 1
of knowing ¢! for all + = 1,2,...,T in hindsight. Under D(X,Y) = §||XfYH2F_ (13)

appropriate conditions, online iterative algorithms cancbn-
structed, which yieldX® at timet, to achieve the regret upper- Substituting (13) and (11) into (12) yields
bounds that grow sublinearly iff; i.e., R.(T)/T — 0 as

T — oo. This means that the online algorithms can eventually Xt — op max{
perform as well as the fixed action selected in hindsight in o gxto
terms of per-stage cost.

M
Z 2wy, [2h, — tr(H,, X")]tr(H,,X)

m=1

1
ol - XU} (14)

B. Online PSSE Algorithm ) o
which can be solved efficiently as well [11].

The online PSSE problem can be stated as follows. At

time ¢ € {1,2,...,T}, a set of M measurementz’ := IV. NUMERICAL TESTS

[24,25,...,24,]7 is obtained. Based on the entire history of _ _ _
measurement$z”}t_,, the state vectow® = [vf, ... v4]7 The proposed online PSSE algorithm was tested using
must be estimated. the |IEEE 6-bus test system with 11 lines, which is depicted

in Fig. 1. In order to compare the performance of the pro-
To solve this problem without explicit modeling of the posed algorithm, the nonlinear weighted least-squares WLS
dynamics of{z"}, the OCO approach is taken to solve (8a)—problem (6) was solved. For this, a Matlab toolbox called
(8b). That is, upon defining MATPOWER [15] was used to generate the pertinent power
flow and all meter measurements corresponding to this 6-
bus system. Then, the state estimation function DoOSE in
MATPOWER was utilized to estimate the power state in each
time slot. For our online PSSE update in (14), a convex
the goal is to choosX' - 0 at each timg € {1,2,...,7} so  optimization package CVX [11], together with its embedded
as to minimize the total co$t./_, ¢!(X?). The power system INterior-point solver SeDuMi [16], was used.

StatEVt at time t can be recovered froth as described in To Simu'ate SIOW dynamics Of the System Stamfswere
Sec. II-B. varied according to a first-order autoregressive modelrgive

1 _
A widely used OCO algorithm is the online mirror descentPY Vt+G = pv' + v, vyh%re efach entry %f’t hgd a zercl)-
(OMD) method, which is a projected (sub)gradient methodme"jmI da}ussmn _;nagngy Qbo_ Vaf'a“@gg 3%8 anT?lnge
with a proximal term based on the Bregman divergence [12]5@MPled from uniform distribution if—0.087, 0.087]. Then,

to._ t\T t\NT1T
The OMD iterations constitute an efficient first-order algon %= [R(v')" I(v!)7]7. The value ofp was set 100.95.
with sublinear convergence rate [13]. The initial statex” was randomly generated with each bus'’s

magnitude Gaussian with mednand variance).01? and the
Specifically, X*+! ¢ R2V*2N s gbtained in OMD as angle uniformly distributed ovef—0.57,0.57]. For the sake
of fixing the phase angle ambiguity, bus 1 was initialized as a
X! = arg %i%wct(xt)?m + %D(X, Xt (12) reference bus with magnitudeand angle0.
= n

The active and reactive power flows across all 11 lines as
wheren! denotes a step size, aiidl -, -) represents a Bregman well as the voltage magnitudes at all 6 buses were measured.
divergence, which encourages the search to be done in thdl measurements are corrupted with mutually independent
proximity of the current iterate&X‘. There are a number of additive Gaussian noise with varianegs = 0.022. The WLS
Bregman divergences that can be used for matrices, ingudinestimator was initialized with a flat voltage profile, namely

M
(X)) =) wpa, — tr(Hp, X)P? (11)

m=1
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Fig. 3. Evolution of the real and the imaginary partsvf [12]

with the all-one vector. The proposed algorithm was initid (3]

by an SDP-based solution to (9).

Fig. 2 compares the root-mean-square-errors (RMSES) dt4l
online PSSE and the WLS-based estimates, where the averag-
ing was done oveb0 independent realizations. Fig. 3 shows [15]
the evolution of the estimates calculated by the two methods
as well as the true staté of bus 3. The top panel corresponds
to the real part ob} and the bottom the imaginary part. It can
be seen that sometimes the WLS estimate induces large errd¥6l
while our SDP-based method stays close to the true state.

V. CONCLUSION

An online PSSE algorithm has been proposed, which
improves upon existing static PSSE by exploiting the past
as well as present measurements. To mitigate the inherent
nonlinearity and nonconvexity of the PSSE problem, an SDP
relaxation approach was adopted, which performs the séarch
a higher dimensional space of symmetric positive semidefini
matrices. An OCO technique was applied to yield an efficient
projected gradient descent algorithm. The proposed algori
was tested in the IEEE 6-bus test system, and performance
advantages were found compared to conventional approaches
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