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Abstract—Power system state estimation (PSSE) constitutes a
crucial prerequisite for reliable operation of the power grid. A
key challenge for accurate PSSE is the inherent nonlinearity of
SCADA measurements in the system states. Recent proposals for
static PSSE tackle this issue by exploiting hidden convexity struc-
ture and solving a semidefinite programming (SDP) relaxation.
In this work, an online PSSE algorithm based on SDP relaxation
is proposed, which enjoys a similar convexity advantage, while
capitalizing on past measurements as well for improved perfor-
mance. An online convex optimization technique is adopted to
derive an efficient algorithm with strong performance guarantees.
Numerical tests verify the efficacy of the proposed approach.

I. I NTRODUCTION

Power system state estimation (PSSE) is crucial for reliable
operation of the power grid. Based on various types of mea-
surements collected at different buses and lines across thegrid,
PSSE aims at recovering unknown system states, which are the
complex voltages at all buses in the network. Accurate PSSE is
critical for detecting instabilities and contingencies, preventing
massive blackout events that can be caused by cascade failure.
The importance of PSSE will be amplified in the future smart
grid, where volatility due to renewable resources as well as
aggravated demand due to transportation electrification will
pose significant challenges to the grid monitoring, management
and control [1].

In order to perform this key task successfully, installation
of phasor measurement units (PMUs) has been advocated.
PMUs can acquire GPS-synchronized voltage measurements
at a much higher rate than the existing SCADA system.
However, as PMUs are deployed progressively, it is still
essential to incorporate SCADA measurements for redundancy
and robustness of PSSE.

One of the challenges in PSSE involving SCADA mea-
surements is that the measurements are nonlinear in the system
states. Traditional approaches adopt a weighted nonlinearleast-
squares formulation, typically solved by Newton-type numer-
ical methods [2]. However, since the problem is inherently
nonconvex, there is no guarantee that the solution found is
globally optimal. In fact, depending on the initial point, the
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iterative solver may get stuck at a locally optimal solution. This
is particularly problematic in the challenging scenarios,where
the system states change significantly between measurements,
or the measurements become corrupted by bad data, leaving
fewer available measurements.

Recent proposals mitigate this issue by exploiting hidden
convexity structure of the power flow relations [3], [4], [5].
Specifically, by lifting the state vector to a higher-dimensional
space involving symmetric positive semidefinite matrices,one
can formulate a semidefinite programming (SDP) problem,
which is convex and whose solution often leads to the globally
optimal solution of the original PSSE problem.

Traditionally, the PSSE problem has been often solved in a
static setup, which ignores the dynamics of power systems, and
thus does not exploit the past observations.DynamicPSSE, on
the other hand, can enjoy improved reliability, robustnessand
observability, even under bad data and topology errors, as well
as achieve state predictability [6], [7]. Faster measurement up-
dates owing to PMUs facilitate dynamic PSSE, while various
smart grid challenges make the approach imperative.

Similar to the static PSSE, dynamic PSSE has to deal with
nonlinearity in measurements. Various nonlinear filteringtech-
niques such as the extended Kalman filter and the unscented
Kalman filter have been employed to address this issue [7], [8].
However, such approximate nonlinear filtering algorithms may
suffer under severe nonlinear dynamics. Moreover, estimation
of the possibly non-stationary dynamics of the system is in
itself a challenging issue [6], [9].

In this work, we do not explicitly commit to a model
of the power system state dynamics, but still capitalize on
the accumulated measurements. An instrumental framework
for this purpose is online convex optimization (OCO), which
has been recently popular for real-time machine learning
applications [10]. In conjunction with convex relaxation of the
nonlinear PSSE problem, the framework naturally provides an
online PSSE algorithm, with strong performance guarantees.

The rest of the paper is organized as follows. In Section II,
the static PSSE formulation as well as the SDP relaxation
approach are reviewed. In Section III the OCO framework
is introduced and an online PSSE algorithm is developed.
Numerical tests are presented in Section IV. Conclusions are
provided in Section V.
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II. REVIEW OF STATIC POWER SYSTEM STATE
ESTIMATION

In this section, the basic formulation of the static PSSE
problem is presented, and a solution technique based on SDP
relaxation recently proposed in [5] is reviewed to lay the
groundwork for our online formulation in Sec. III.

A. Static PSSE Problem Statement

Let N := {1, 2, . . . , N} denote the set of buses in a
transmission network consisting ofN buses, and letL :=
{(n, n′) : n, n′ ∈ N} represent the transmission lines in the
network. The static PSSE problem is to obtain the complex
voltage estimates of all buses in a power network for a given
time based on the measurements acquired at a subset of
the buses and lines. Observations on various power system
quantities include: i) the active and reactive powers injected
at bus n ∈ N , denoted asPn and Qn, respectively; ii)
the active and reactive power flows from busn to n′ for
(n, n′) ∈ L, denoted asPnn′ andQnn′ , respectively; and iii)
the voltage magnitude|Vn| at busn ∈ N . Collectively, denote
suchM measurements asz := [z1, z2, . . . , zM ]T , wherezm
corresponds to them-th measurement regardless of its type,
and ·T stands for transposition. Givenz, the goal of PSSE is
to obtainv := [V1, V2, . . . , VN ]T , or Vn at all n ∈ N .

The measurementsz are nonlinearly related to the unknown
v. Specifically, letY ∈ C

N×N be the admittance matrix of
the transmission grid, andi := [i1, i2, . . . , iN ]T the vector of
injected currents at all buses. Then, Kirchhoff’s and Ohm’s
laws yield

i = Yv (1)

and the complex power injected to noden ∈ N is given by

Pn + jQn = VnI
∗
n (2)

where ·∗ denotes complex conjugation. Similarly, the line
currentsInn′ for (n, n′) ∈ L are given by

Inn′ = ys,nn′Vn + ynn′(Vn − Vn′) (3)

where ys,nn′ represents the shunt admittance at busn asso-
ciated with line (n, n′). The complex power flow over line
(n, n′) is then given as

Pnn′ + jQnn′ = VnI
∗
nn′ . (4)

Encapsulating the generally linear-quadratic relation between
zm andv throughhm(·), one obtains the measurement model

zm = hm(v) + ǫm, m = 1, 2, . . . ,M (5)

whereǫm is assumed to be zero-mean Gaussian with variance
σ2
m, and independent acrossm. Under this model, the static

PSSE problem is formulated as a weighted nonlinear least-
squares one, given by

min
v

M
∑

m=1

wm [zm − hm(v)]
2 (6)

wherewm := (σ2
m)−1.

B. SDP Relaxation Approach

Problem (6) is nonconvex, and various numerical methods
such as Newton’s iteration have been employed targeting the
local optima of this problem [2]. Recently, an SDP relaxation-
based approach showed much potential to locate a globally
optimal solution. The key observation is that upon defining
x := [ℜ(v)T ℑ(v)T ]T , which stacks the real and imaginary
parts of vectorv, and lettingX := xx

T , one can express
measurement functionhm(v) as linear inX; that is,

hm(v) = tr(HmX) (7)

for someHm ∈ R
2N×2N , which is a matrix that may depend

on the underlying line parameters. Substituting (7) into (6),
one obtains an equivalent formulation given by

min
X

M
∑

m=1

wm [zm − tr(HmX)]
2 (8a)

subject toX � 0 (8b)
rank(X) = 1. (8c)

Problem (8) is nonconvex due to the rank constraint (8c).
Removing (8c) renders the problem (8a)–(8b) convex. This,
in turn, can be shown (using Schur’s complement lemma) to
be equivalent to an SDP given next, which can be solved very
efficiently [11].

min
X,α

w
T
α (9a)

subject to

[

−αm zm − tr(HmX)
zm − tr(HmX) −1

]

� 0,

m = 1, . . . ,M (9b)
X � 0 (9c)

whereα := [α1, α2, . . . , αM ]T andw := [w1, w2, . . . , wM ]T .
If the optimal solutionXopt for (9) has rank1 such that
Xopt = xoptx

T
opt, thenxopt = [ℜ(vopt)

T ,ℑ(vopt)
T ]T yields

the globally optimal solutionvopt for (6) and α2
m,opt =

[zm − hm(vopt)]
2. If rank(Xopt) > 1, the best rank-1 ap-

proximation
√
λ1u1 can be used, whereλ1 and u1 are the

largest eigenvalue and the corresponding unit-norm eigenvector
of Xopt, respectively.

III. O NLINE POWER SYSTEM STATE ESTIMATION

Online PSSE aims at capitalizing on the entire measure-
ment history to obtain state estimates of improved accuracy
at manageable complexity, while at the same time track slow
variation emerging due to time-varying line parameters, load
or renewable generations, which contain uncertainty. Dynamic
state-space models have been considered along with nonlinear
filtering techniques such as the extended and the unscented
Kalman filters [6], [7], [8]. In this work, we advocate the
use of the online convex optimization (OCO) framework [10],
which does not require an explicit dynamical model, but still
provides guaranteed performance. A brief overview of the
OCO framework is first given next, followed by its application
to an online PSSE formulation.
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A. Online Convex Optimization Models

The OCO model considers a multi-stage game between
a player and an adversary. (In the present setup, the utility
that performs PSSE assumes the role of the player, while
the load and the renewable generators can be regarded as the
adversary.) At timet, the player chooses an actionXt ∈ X ,
and subsequently the adversary reveals a convex function
ct : X → R. As will be specified in the next subsection,
X

t will be the rank-relaxed matrix variable for (8a)–(8b), and
ct the quadratic fitting cost. Then, the player suffers the loss
of amountct(Xt). The goal of the player is to minimize the
so-calledregretRc(T ) over T stages, defined as

Rc(T ) :=

T
∑

t=1

ct(Xt)− min
X∈X

T
∑

t=1

ct(X) (10)

which corresponds to the cost incurred by the player rel-
ative to the cost due to a single best actionX∗ :=
argminX∈X

∑T

t=1
ct(X), which is selected with the benefit

of knowing ct for all t = 1, 2, . . . , T in hindsight. Under
appropriate conditions, online iterative algorithms can be con-
structed, which yieldXt at timet, to achieve the regret upper-
bounds that grow sublinearly inT ; i.e., Rc(T )/T → 0 as
T → ∞. This means that the online algorithms can eventually
perform as well as the fixed action selected in hindsight in
terms of per-stage cost.

B. Online PSSE Algorithm

The online PSSE problem can be stated as follows. At
time t ∈ {1, 2, . . . , T}, a set ofM measurementszt :=
[zt1, z

t
2, . . . , z

t
M ]T is obtained. Based on the entire history of

measurements{zτ}tτ=1, the state vectorvt := [vt1, . . . , v
t
N ]T

must be estimated.

To solve this problem without explicit modeling of the
dynamics of{zt}, the OCO approach is taken to solve (8a)–
(8b). That is, upon defining

ct(X) :=

M
∑

m=1

wm[ztm − tr(HmX)]2 (11)

the goal is to chooseXt � 0 at each timet ∈ {1, 2, . . . , T} so
as to minimize the total cost

∑T

t=1 c
t(Xt). The power system

statevt at time t can be recovered fromXt as described in
Sec. II-B.

A widely used OCO algorithm is the online mirror descent
(OMD) method, which is a projected (sub)gradient method
with a proximal term based on the Bregman divergence [12].
The OMD iterations constitute an efficient first-order algorithm
with sublinear convergence rate [13].

Specifically,Xt+1 ∈ R
2N×2N is obtained in OMD as

X
t+1 = argmin

X�0
〈∇ct(Xt),X〉+ 1

ηt
D(X,Xt) (12)

whereηt denotes a step size, andD(·, ·) represents a Bregman
divergence, which encourages the search to be done in the
proximity of the current iterateXt. There are a number of
Bregman divergences that can be used for matrices, including

Fig. 1. IEEE 6-bus test system.

the Frobenius, von Neumann and log-det divergences [14]. In
this work, we adopt the Frobenius divergence given by

D(X,Y) =
1

2
||X−Y||2F . (13)

Substituting (13) and (11) into (12) yields

X
t+1 = argmax

X�0

{

M
∑

m=1

2wm[ztm − tr(HmX
t)]tr(HmX)

+
1

2ηt
||X−X

t||2F
}

(14)

which can be solved efficiently as well [11].

IV. N UMERICAL TESTS

The proposed online PSSE algorithm was tested using
the IEEE 6-bus test system with 11 lines, which is depicted
in Fig. 1. In order to compare the performance of the pro-
posed algorithm, the nonlinear weighted least-squares (WLS)
problem (6) was solved. For this, a Matlab toolbox called
MATPOWER [15] was used to generate the pertinent power
flow and all meter measurements corresponding to this 6-
bus system. Then, the state estimation function DoSE in
MATPOWER was utilized to estimate the power state in each
time slot. For our online PSSE update in (14), a convex
optimization package CVX [11], together with its embedded
interior-point solver SeDuMi [16], was used.

To simulate slow dynamics of the system states,x
t were

varied according to a first-order autoregressive model given
by v

t+1 = ρvt + νt, where each entry ofνt had a zero-
mean Gaussian magnitude of variance0.052 and an angle
sampled from uniform distribution in[−0.08π, 0.08π]. Then,
x
t := [ℜ(vt)T ℑ(vt)T ]T . The value ofρ was set to0.95.

The initial statex0 was randomly generated with each bus’s
magnitude Gaussian with mean1 and variance0.012 and the
angle uniformly distributed over[−0.5π, 0.5π]. For the sake
of fixing the phase angle ambiguity, bus 1 was initialized as a
reference bus with magnitude1 and angle0.

The active and reactive power flows across all 11 lines as
well as the voltage magnitudes at all 6 buses were measured.
All measurements are corrupted with mutually independent
additive Gaussian noise with variancesσ2

m = 0.022. The WLS
estimator was initialized with a flat voltage profile, namely,
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Fig. 2. RMSE performances.

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

Time

E
st

im
at

e 
of

 x
3

 

 

true

online estimate

WLS estimate

0 5 10 15 20 25 30 35 40 45 50
−0.4

−0.2

0

0.2

0.4

Time

E
st

im
at

e 
of

 x
9

 

 

true

online estimate

WLS estimate

Fig. 3. Evolution of the real and the imaginary parts ofv
t

3

with the all-one vector. The proposed algorithm was initialized
by an SDP-based solution to (9).

Fig. 2 compares the root-mean-square-errors (RMSEs) of
online PSSE and the WLS-based estimates, where the averag-
ing was done over50 independent realizations. Fig. 3 shows
the evolution of the estimates calculated by the two methods
as well as the true statevt3 of bus 3. The top panel corresponds
to the real part ofvt3 and the bottom the imaginary part. It can
be seen that sometimes the WLS estimate induces large error,
while our SDP-based method stays close to the true state.

V. CONCLUSION

An online PSSE algorithm has been proposed, which
improves upon existing static PSSE by exploiting the past
as well as present measurements. To mitigate the inherent
nonlinearity and nonconvexity of the PSSE problem, an SDP
relaxation approach was adopted, which performs the searchin
a higher dimensional space of symmetric positive semidefinite
matrices. An OCO technique was applied to yield an efficient
projected gradient descent algorithm. The proposed algorithm
was tested in the IEEE 6-bus test system, and performance
advantages were found compared to conventional approaches.
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