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ABSTRACT

Early detection and treatment of psychiatric disorders on children
has shown significant impact in their subsequent development and
quality of life. The assessment of psychopathology in childhood
is commonly carried out by performing long comprehensive inter-
views such as the widely used Preschool Age Psychiatric Assess-
ment (PAPA). Unfortunately, the time required to complete a full
interview is too long to apply it at the scale of the actual population
at risk, and most of the population goes undiagnosed or is diagnosed
significantly later than desired. In this work, we aim to learn from
unique and very rich previously collected PAPA examples the inter-
correlations between different questions in order to provide a reliable
risk analysis in the form of a much shorter interview. This helps to
put such important risk analysis at the hands of regular practition-
ers, including teachers and family doctors. We use for this purpose
the alternating decision trees algorithm, which combines decision
trees with boosting to produce small and interpretable decision rules.
Rather than a binary prediction, the algorithm provides a measure of
confidence in the classification outcome. This is highly desirable
from a clinical perspective, where it is preferable to abstain a deci-
sion on the low-confidence cases and recommend further screening.
In order to prevent over-fitting, we propose to use network inference
analysis to predefine a set of candidate question with consistent high
correlation with the diagnosis. We report encouraging results with
high levels of prediction using two independently collected datasets.
The length and accuracy of the developed method suggests that it
could be a valuable tool for preliminary evaluation in everyday care.

Index Terms— childhood development, boosting, mental
health, questionnaire, network analysis

1. INTRODUCTION

There is increasing evidence suggesting that anxiety disorders are
present in very young children [1, 2], yet anxiety in the preschool
period often goes undetected and untreated [3]. In the current sam-
ple, less than 5% of children suffering from an impairing anxiety
disorder had been referred for further evaluation or treatment [2].
The ability to quickly and reliably detect and intervene with anxiety
disorders in early childhood, during a period when the childs brain is
still developing, could directly alter the childs developmental trajec-
tory [4, 5], putting the child at decreased risk for psychiatric illnesses
later in life.

The PAPA is a comprehensive interview that assesses symptoms
for a range of psychiatric diagnoses in children ages 2-5 [6]. The
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PAPA uses a highly structured protocol, with required questions and
probes. When symptoms are reported, their frequency, duration and
dates of onset are also collected, to determine whether they meet the
symptom overlap and duration criteria for the various Diagnostic and
Statistical Manual (DSM) diagnoses. While shorter measures (e.g.
CBCLY-5 [7]) can identify individuals with similar disorders in less
time, they do not provide the same level of detail about the symptoms
that comprise the disorders. By getting this level of detail, one is
able to not only determine the presence or absence of a disorder,
but to also understand the normal distribution of severity, frequency,
and duration of symptoms across the population, which is imperative
for determining where the cut-points between normal variation and
clinical symptomatology lie for these disorders. The time required
to complete an interview that collects this level of data, however, is
extremely time prohibitive and would be impossible to incorporate
into everyday clinical care. Thus, there is a need for developing tools
that can be used in daily care settings for assessing risk, and then
referring the child for the full evaluation when necessary. This way,
we expect not to miss the 95% of the population currently missed.

A wealth of data has been collected using the full PAPA inter-
view on children ages 2-5 in pediatric primary care. These inter-
views have all been conducted in a lab setting where sufficient time
is set aside for the completion of the entire interview. This high-
value and unique data contains very important information from
which meaningful statistical relations between symptomatology and
the different disorders can be obtained. In this paper, we propose
to use this data in order to move away from the full interview and
determine if individual interview items or clusters of items can pre-
dict, with high reliability and low false positive rates, that the child
is likely to have a specific diagnosis. That way, if there is a subset
of the full interview items that, if endorsed, reliably identifies a sig-
nificant proportion of children who are diagnosed with the disorder
based on the full interview, while maintaining the validity of the full
interview, then those “high value” items could be prioritized during
a shorter clinical interview. This would not only decrease the time it
would take to make a risk assessment, but also decrease the amount
of training required to complete the interview. This would permit
the use of the PAPA, or a subset of it, in a larger range of settings,
such as busy pediatric primary care clinics and school counseling
departments. Furthermore, by understanding the confidence with
which subsets of items predict a specific disorder, we will be able
to provide both the parent and clinician with information about how
confident they can be that a child does or does not have a disorder.
This will also allow the identification of children for whom we have
insufficient confidence about their status, who can then be referred
to a specialty clinic for the full, comprehensive interview. This will
enable us to quantify best clinical practices in a usable, accessible,
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and reproducible way. The obtained data-driven tool is very flexible
as it can be naturally revised and updated as more data gets collected
or adapted to a specific cultural environment.

2. PRIOR WORK AND PROPOSED METHOD

Given the set of completed interviews with their corresponding diag-
nosis, our problem can be thought as a classic classification problem
in which the feature vectors are a subset of the questions used in the
full interviews and the labels are given by the diagnosis.

The problem of finding compact classifiers has been previously
studied in the literature. Many works have independently proposed
to use alternating decision trees (ADtrees) [8]. This algorithm was
first proposed in the context of automatic call classification in spo-
ken language dialogue [9]. The appealing property of this algorithm
is that, by combing boosting and decision trees, the obtained clas-
sifiers are more compact and easy to interpret. ADtree produces
decision trees with considerably fewer nodes (weak learners) than
other boosted decision tree algorithms (such as C4.5 [10]) and with
no performance degradation. The compactness of this classifier was
previously exploited in several medical applications such as early
diagnosis of dengue fever [11], modeling disease trait information
[12], heart-disease diagnostics [8], and for shortening observation-
based screening and diagnosis of autism [13]. In [13] the authors
present an extensive experimental evaluation in which ADtrees ob-
tain the best performances while, at the same time, being the most
compact alternative.

All the above-mentioned examples apply off-the-shelf ADtree
algorithms to their particular case of study. In [13], the classifier
used with ADtrees considers a small number of questions only be-
cause it is run over a small number of iterations. This is not optimal
in the sense that one could keep adding nodes without increasing the
number of questions to improve performance. On the other hand,
choosing the number of boosting iterations is a difficult task, nor-
mally done via cross validation. As was reported in [8], ADtrees are
known to overfit the data, and the situation is more delicate for small
datasets. This is particularly important when adding a node implies
asking a new question. Hence we would like to have an objective
measure of when the questions used by ADtrees are statistically rel-
evant for the diagnosis and not just for improving the classification
accuracy on the training set.

In this work, in addition to using for the first time the unique
data coming from the PAPA, we propose to mitigate these problems
by pre-processing the data using network analysis. The idea is to use
network inference to first identify the subset of questions that are
statistically correlated with the different diagnosis. We then propose
to construct the classifier by using a two-step approach:

* We first select a small subset of relevant questions, explained
in Section 3.

e We then apply the ADtrees algorithm, briefly described in
Section 4, only to those pre-selected questions.

3. NETWORK-BASED QUESTIONS SELECTION

The understanding of the dependencies between questions, and more
important the relation between questions and the presence of a dis-
order, is crucial in order to reduce the size of the questionnaire, pro-
ducing a shorter interview.

We now characterize and visualize these dependencies in terms
of networks or graphs. We consider each question as a node in the
graph, adding the diagnosis as a node as well, and we infer an edge

between two nodes whenever the corresponding questions are re-
lated, according to some criterion. The weight of each edge is in
concordance with the strength of the dependency. A very meaning-
ful way to describe these dependencies is in terms of the conditional
correlations. We represent the answers to the questionnaire as a ma-
trix X € R™*P, where each column X; contains the answers to
the question ¢ for n subjects. Then, the weight of the edge between
nodes ¢ and j in the graph represents the correlation between X; and
X given all the rest of the variables X, k # 4, j. The absence of
an edge means that X; and X; are conditionally independent.

It is well known that when the data X follows a Gaussian distri-
bution, the entries of the inverse covariance matrix £~ " correspond
to rescaled conditional correlations. This implies in particular that
the sparsity pattern of X! reveals the structure of the graph of con-
ditional correlations. A great number of applications are based on
this property, from social sciences and economics to biology [14]. In
most of these applications, the underlying graph structure is known
to be sparse, and the so-called Graphical Lasso approach [15] has
proven to be successful for these cases. The formulation of the
Graphical Lasso is the convex optimization problem given below,
and it consists on a Maximum Likelihood estimation of 37! with a
sparsity promoting penalty term:

min tr(S®) — logdet ® + \||®||¢,, (1)

where S is an estimator of the covariance matrix and the ¢; norm is
[1©]le, = Zi,j 1©41.

Although the previous properties hold for Gaussian distribu-
tions, recent results show that similar statements can be made for
more general models. For instance, when the variables X; follow
an arbitrary discrete distribution, under some extra conditions, the
inverse covariance matrix reflects the structure of the conditional
correlation graph, and the Graphical Lasso program is a consistent
method for recovering this structure [16].

The strategy for selecting the most relevant questions is there-
fore the following. We first build the conditional dependency graph
by running the Graphical Lasso pn the questionnaire, including the
diagnosis column, and then we look for the nodes connected to the
diagnosis node. The use of these conditional correlations is very im-
portant, since it gets rid of indirect connections, keeping only the
direct dependencies. For instance, suppose that question ¢ is related
to question j, but only question ¢ is relevant to the diagnosis. In that
case, considering only the conditional dependencies one would se-
lect only the question ¢, although both questions would have positive
correlation with the diagnosis.

The problem of selecting the best question subset is very hard,
since it is not tractable by exhaustive search due to the exponential
size of the set of parts. We tackle this problem by selecting those
questions which are directly correlated with the diagnosis, using the
training dataset. More specifically, we estimate the empirical covari-
ance matrix S from the training data, and run the Graphical Lasso
(1) to obtain an estimate of the adjacency matrix of the conditional
correlation graph, see Figure 1. This graph contains very meaningful
information about the dependence between questions. However, in
this part we focus on the connections between the questions and the
diagnosis node, information which is contained in the column of the
adjacency matrix corresponding to the diagnosis. We sort this vector
in descending order, see Figure 1 for an example. Due to the inher-
ent sparsity of the graph, and the capacity of the Graphical Lasso to
recover this structure, the number of questions with positive condi-
tional correlation with the diagnosis, g, is significantly smaller than
the total number of questions, p. We pre-select only the questions
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with non zero correlation to the diagnosis to be used by the ADtree
algorithm. If I = {i1,...,4q} is the set of indexes of the selected
questions, we denote by X; € R™*¢ the reduced questionnaire.

4. ALTERNATING DECISION TREES

Alternating decision trees are an extension of both, binary decision
trees and voted stumps [8]. The structure of the ADtrees classifier is
given by a series of decision nodes and prediction layers organized
in the form of a tree. The decision nodes are given by very simple
rules based on individual variables. In our problem, they can take
the form of quantitative comparison such as “the patient feels in a
certain way more than x times per week or not”, or a simple binary
decision such as “the patient presents a give symptom or not”. Fol-
lowing each decision node comes a prediction layer that assigns a
real-valued coefficient to the each of the binary outputs of the de-
cision rule. Formally, for the t** node in the tree we can define a
function r; : R? — R that is zero for responses that do not meet
the conjunction of conditions that lead to this particular node in the
tree, takes a value a; if the node’s condition is satisfied and a value
b otherwise. For a given response x € RY, the classification rule is
the sign of the sum of the individual node predictions,

class(x) = sign (Z T4 (x))7 2)

where T is the total number of nodes in the tree. Hence, ADtrees can
be thought as a majority vote over a particular type simple predic-
tion rules. ADtrees uses AdaBoost [17] to learn the parameters on
each individual classifier. The algorithm iteratively grows the tree
one node at a time, see [8, 17] for details. The selection of T" to
avoid overfitting is a delicate task (particularly for small datasets)
[8] and in general is done via cross-validation. Note that the number
of questions actually used does not depend on 7'. It could happen
that the algorithm always uses questions from a subset to define the
nodes. In our application, asking the questions is costly while adding
nodes to the classifier is not, thus, we can restrict the algorithm to use
few relevant questions but can increase the number of decision nodes
so as to obtain more complex decision rules. The absolute value of
the additive expansion in (2) gives a measure of confidence in the
classification results. This was observed experimentally [8] and the-
oretically [18], providing a way to recover the class probability.

5. EXPERIMENTAL EVALUATION

Study Design and Participants: Data was acquired from indepen-
dent samples of participants recruited as part of two separate studies:
(i) The Preschool Age Psychiatric Assessment (PAPA) Test-Retest
study (n = 307) [6] and (ii) The Duke Preschool Anxiety Study
(PAS) (n = 917) [2]. Both studies recruited children aged 2 to 5
years old attending Duke University Pediatric Primary Care Clinics
for both well-child and sick-child visits. These clinics care for a di-
verse population of families, drawn from the city of Durham and the
surrounding rural areas of Durham County. Inclusion criteria were
(i) the child was between 24 and 71 months old and (ii) the child
attended the pediatric clinic during a screening period. Exclusion
criteria were (i) the child was not accompanied by a parent/legal
guardian who could provide consent, (ii) the parent/legal guardian
lacked adequate fluency in English to complete the screen, (iii) the
index child was known to have IQ) < 70, autism, or other pervasive
developmental disorders, (iv) the child’s sibling was participating in

the study, or (v) the provider decided that the child was too medically
ill at the visit for the parent to be approached about the study.

T-R dataset: The PAPA Test-Retest study included 1,073 parents
with children ages 24 to 71 months screened with the CBCL!2-5
questionnaire. Children who obtained a T score greater or equal than
55 on the total symptom score of the CBCLY:-5, which identifies
the top 30% of the general population according to the CBCLYx-
5 norms [7], were considered screen high. The number of screen
highs in our sample was 307, 246 (stratified by age, gender, and
race) of which were selected for recruitment in the study. Of this
246, 193 completed the interview phase. A random sample of 20%
of parents whose children had a T score smaller or equal than 55
(screen lows) were invited to take part in the test-retest phase of the
study. Interviewers were blind to the parent’s screen status and to the
results from the first interview at the time of the second interview.
307 patients completed both PAPA interviews.

PAS dataset: The Preschool Anxiety Study included 3,433 parents
screened using a 10-item anxiety screening measure developed using
data from the earlier Test-Retest study from our group [6]. Children
were identified as screen positive for anxiety if the parents endorsed
4 or more of the 10 items on this screener. All children who screened
high (n = 944) and a random sample of 189 who did not screen high
were selected to participate in an in-home assessment. Of the 1,132
children selected to participate in the in-home assessment, 917 eli-
gible parents completed the PAPA and checklist assessments about
the child’s psychiatric symptoms and temperament, the parent’s own
personality traits, symptoms of anxiety, and depression, and distress
in the parent-child relationship. The Duke University Medical Cen-
ter Institutional Review Board approved both of these studies.

GAD and SAD: We evaluated the proposed approach in two com-
mon disorders observed in young children: Generalized Anxiety
Disorder (GAD) and Separation Anxiety Disorder (SAD). Anxiety
was measured using the anxiety disorders module of the Preschool
Age Psychiatric Assessment (PAPA) [6]. Diagnoses and symptom
scales are generated by combining the answers of questions in the
PAPA interview: ¢ = 27 questions for GAD and 7 = 51 questions
for SAD. The PAPA includes assessment of most DSM diagnostic
criteria in sofar as they are relevant to younger children, plus all
items in the Diagnostic Classification: 0-3R (Zero to three diagnos-
tic classification system, Washington, DC, 2005). Impairment due to
anxiety symptoms was also assessed using the World Health Orga-
nization’s International Classification of Functioning, Disability and
Health (2001). Detecting the cases in which both GAD and SAD
cause impairment is of high relevance.

Question selection and classification: We trained several classi-
fication trees for both GAD and SAD in different settings. ADnet
refers to result obtained with the method proposed in this paper,
which restricts the ADtrees algorithm to choose questions from the
ones pre-selected via network analysis. We refer simply as ADtree
when the algorithm can choose question with no restrictions. As ex-
plained in Section 4 , we selected via cross-validation the number of
nodes in the tree which is independent from the number of questions
pre-selected by the networks. We consider pairs (ng,nny), where
nq is the number of questions used by the algorithm and n v is the
number of nodes composing the decision tree. We studied the case
of binary classification and a second situation in which we omitted
a decision for those tested samples with low confidence. We de-
fined a result as low confidence if the probability of belonging to
the chosen class was smaller than 0.8. As a benchmark we com-
pared the obtained classifiers against the C4.5 algorithm [10]. If we
do not restrict the number of questions, C4.5 would in general use
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Fig. 1: Network inference. Estimated conditional correlation graphs for GAD (left) and SAD (center) datasets. The center node corresponds to the diagnosis,
and questions are distributed in the half-circle. Right: decay of the conditional correlation coefficients between all questions with the diagnosis.

Table 1: Performance comparison for different algorithms for predicting
GAD, measured in terms of False Positive Rate (FPR), True Positive Rate
(TPR), Accuracy (Acc), and size of the low confidence set (LC). All values
are percentages.

GAD binary GAD conf.
Method FPR TPR Acc. | FPR TPR Acc. LC
No imp.
C4.5 (4) 26 100 977 | 26 100 977 0

ADnet 2,4) 2.6 100 97.7 0 100 100 134
ADnet (4,8) 2.6 100 97.7 1.1 100 990 52

With imp.
C4.5(4) 6.2 939 938 4.1 89.5 955 6.5
ADnet 2,4) 4.1 732 938 0 — 100 19.1

ADnet (4,8) 5.1 84.8 938 0.4 100 99.6 150

all (or most) of them. Thus we restricted C4.5 to use the questions
pre-selected by the network analysis. In all the cases we trained the
classifiers using the PAS dataset (917 samples) and then tested on
the T-R dataset (614 samples). We define a patient as positive if
they were diagnosed with GAD or SAD and negative if they were
not. Given it’s relevance, we also trained classifiers to predict when
the anxiety disorders, both GAD and SAD, occurred with impair-
ment. In the PAPA, imairment is assessed with different sections of
the interview which require another set of 40 questions. We did not
include any of those questions in the study, we tried to see if the
information given in the anxiety sections was enough to predict im-
pairment. In this case positives where patients that were diagnosed
with GAD or SAD and also presented any type of social impairment.

We measured performance in terms of False Positive Rate
(FPR), True Positive Rate (TPR), and Accuracy (Acc). The accu-
racy is defined as, Acc = (TP 4+ TN)/(FP + FN + TP + TN),
where TP and FP are the true and false positives, and TN and FN
are the true and false negatives. We denoted as LC the percentage of
the tested cases for which the prediction has low confidence.

‘We begin by running the network analysis presented in Section 3
for both the GAD and SAD diagnosis (Figure 1). In both cases the
number of questions with non-zero correlation to the diagnosis is
much smaller than the total number of questions. Moreover, in the
case of the GAD dataset, there are two questions clearly much more
related to the presence of GAD than the others, and using only these
two questions the ADtree classifier already yields excellent results.
We selected all the questions positively related to the diagnosis: 5
questions out of 27 were chosen for the GAD dataset, and 11 out
of 51 for the SAD case. This reduction is very significant, and the
resulting questions are the input to the following classifier stage.

Tables 1 and 2 summarize the results obtained for GAD and
SAD respectively, while reducing the number of questions by at least
an order of magnitude. We can see that in both cases the algorithm
provides a very reliable risk estimator with accuracy values in the up-
per nineties. We observe that the case of GAD is considerably easier

Table 2: Performance comparison for different algorithms for predicting
SAD. See Table 1 for notation.. All values are percentages.

SAD binar SAD conf.
Method FPR TPR yAcc. FPR TPR Acc. LC
No imp.
C4.5(5) 09 568 935 | 06 616 948 3.6
ADnet (5,5) 09 568 935 | 0 720 974 107

ADnet (5,12) 3.0 605 922 0 80.0 983 147
ADtree (10,12) 3.2 593 919 04 385 940 72

With imp.

C4.5(5) 39 571 930 | 39 571 93.0 0
ADnet (5,5) 37 551 930 | 06 412 975 140
ADnet (8,12) 35 592 935 08 533 979 151
ADtree (10,12) 0 4.1 92.3 0 — 92.7 1.5

and can be asses with much fewer questions than the SAD, obtaining
perfect classification results. We further restricted the per-selected
questions to only 2, the ones which had the highest correlation co-
efficients, see Figure 1. In general, we observe that including more
questions makes possible to have much smaller low confidence sets,
which implies fewer children sent out for further evaluation. Having
different models trained with different number of questions means
that the test can be carried out in a serial manner, we accumulate
evidence in favor or against the presence of the disorder as we go.
If at a certain point we have a very high confidence, then we do not
need to continue. On the other hand if after making a short test the
confidence is still low, we can ask an additional set of questions to
try to improve the confidence in the results. We observe very good
performance for predicting when the disorders occur with an impair-
ment, which is quite remarkable since non of the specific questions
for assessing impairment where included

Using directly the ADtrees algorithm leads to weaker results
than pre-selecting the questions as in ADnet. This can be seen
clearly in the case of SAD. The ADtrees achieves better performance
on the training set but presents worse generalization, requiring more
questions to reach a similar performance as ADnet. The confidence
score provided by the ADtree algorithm does not carry as much
information as in the case of ADnet.

6. DISCUSSION

We presented a method for reliably measuring the risk of psy-
chopathology in childhood. The method requires significantly fewer
questions than the standard interviews. We presented experimental
validation using two distinct datasets obtaining encouraging results
that suggest that it could be a valuable tool for preliminary eval-
uation in everyday care. This paper is a first step in the direction
of using statistical tools in child development applications. We be-
lieve that significant contribution can be made with high impact for
children’s health.
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