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ABSTRACT

We propose a novel close-talking spherical microphone ar-
ray that uses the residual signal between the observed sound
pressure and the interpolated sound pressure at the center of
the spherical array. The interpolated sound is obtained from
the sound pressures observed on the surface of a sphere on
the basis of the spherical harmonic expansion, assuming that
the sound originates from the outside of the array. If the
sound source is close to the spherical array, the array can-
not express the spherical wave correctly because the number
of microphones is limited. As a result, the residual signal in-
creases. This method is a modified form of the conventional
method, which interpolates the sound pressure by using the
Kirchhoff integral equation. In contrast with the conventional
method, we interpolate the sound at the center of the sphere
by using only the average value of the sound pressures on the
spherical array surface. The computer simulations were con-
ducted using a 12-element spherical microphone array with
radius of 5 cm. These results showed that the performances
of both methods were almost equivalent, although the pro-
posed method used half the number of microphones as the
conventional method.

Index Terms— close-talking microphone, microphone
array, spherical harmonic expansion

1. INTRODUCTION

The microphone array is an important technology used to re-
ceive far-field sound in a noisy environment. However, when
the noise level is very high, the far-field microphone array
may not be able to eliminate the noise. A close-talking mi-
crophone is often used for such a case. The close-talking
microphone is designed to have a spatial sensitivity that is
very high near the microphone; for example, the distance be-
tween the microphone and sound source (mouth) is approx-
imately 4 cm, but far-field sound is not acquired. Although
a pressure-gradient microphone is usually used as a close-
talking microphone, its frequency response varies when the
distance between the source and microphone or the direction
of the microphone are changed [1].

To overcome this problem, some near-field spherical ar-
rays have been proposed in the spherical harmonic domain
[3][4]. These methods use the spatial orthonormal decom-
position of the sound with respect to the directional and ra-
dial components to emphasize the near-field sound. Radial
filtering may be a promising approach to create a true three-
dimensional microphone array.

Another close-talking microphone array with orientation
invariance has been proposed on the basis of the Kirchhoff in-
tegral equation by Date et al. [5]. In this close-talking spher-
ical microphone array, the microphones are arranged on an
“open” sphere, and one microphone is placed at the center of
the sphere. First, this array interpolates the sound pressure
at the center of the sphere by using the surface integral of
the sound pressure, the normal derivative of the sound pres-
sure to the boundary surface, and the time derivative of the
sound pressure on the boundary spherical surface on the ba-
sis of the Kirchhoff integral equation. Then, this array outputs
the residual signal between the observed sound pressure at the
center of the sphere and the interpolated sound pressure. The-
oretically, if the sound source is located outside of the closed
region (the spherical array), the output signal is zero. How-
ever, when the sound source is very close to the microphone
array, the residual signal is increased because the array sys-
tem may be unable to distinguish whether the position of the
sound source is inside or outside the closed region as a result
of using a finite number of microphones. The array uses these
characteristics to achieve a close-talking microphone.

The Kirchhoff integral equation is also applied to wave
field synthesis (WFS) [6]. In this research area, high-order
ambisonics (HOA) based on spherical harmonic expansion
are also studied [7]. Recently, it was reported that WFS and
HOA have a close relationship [8]-[10]. This relationship
seems to be applied to the above close-talking spherical mi-
crophone array, so we propose a new close-talking spheri-
cal microphone array based on spherical harmonic expansion.
The proposed spherical array interpolates the sound pressure
at the center of the sphere by using the sound pressures ob-
served on the sphere. The array output is the difference be-
tween the sound pressure observed at the center and the inter-
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Fig. 1. Definition of spherical coordinates: x =
r sin θ cos φ, y = r sin θ sin φ, and z = r cos θ.

polated sound pressure in the same way as the conventional
method does.
In this paper, section 2 describes a conventional close-

talking spherical microphone array based on the Kirchhoff in-
tegral equation. In section 3, we propose a novel close-talking
spherical microphone array based on the spherical harmonic
expansion. Section 4 shows the results of the computer simu-
lation with a spherical array with a radius of 5 cm.

2. CONVENTIONAL CLOSE-TALKING ARRAY
BASED ON KIRCHHOFF INTEGRAL

In this paper, we assume a spherical microphone array in
which the microphone units are equispaced or equiangular
[11][12]. Moreover, the array is open-sphere and acoustically
transparent. We use the spherical coordinates shown in Fig.
1. In this figure, r is the radius of the sphere, and θ and φ
indicate the angles. After that, we use the simple expression
of Ω = (θ, φ).
Date et al. has proposed a close-talking spherical micro-

phone array based on the Kirchhoff integral equation in the
time domain [5]. The Kirchhoff integral equation shows that
the sound pressure at an arbitrary position within a closed re-
gion can be calculated by using the sound pressures, normal
directional pressures, and time differential of the sound pres-
sures on its surface. Date et al. applied this equation to a

Fig. 2. Illustration of microphone positions and boundary sur-
face in a conventional close-talking spherical array based on
Kirchhoff integral equation.

spherical microphone array by setting the closed surface and
arbitrary position as a spherical surface and the center of the
sphere, respectively. Figure 2 shows an illustration of the mi-
crophone positions and the boundary surface. This method
first interpolates the sound pressure at the center of the sphere
by using the surface integral of the sound pressures, normal
directional sound pressures, and time differential of the sound
pressures on the sphere. The array output signal y(t, ω) is ob-
tained by subtracting the interpolated signal from the actual
observed sound p0(t, ω) at the center. When assuming that
the sound is a monophonic wave, and we omit the time index
t and ω, the output signal y is

y = p0−
1
M

M∑
i=1

[
p(r, Ωi)+r

∂p(r, Ωi)
∂n

+
(r

c

)∂p(r, Ωi)
∂t

]
t0=t− r

c

,

(1)

Here, r is the radius of the array, p(r, Ωi) indicates the sound
pressure on the sphere, i is the index of the microphones, M
is the number of microphones, and the c is the sound velocity.
[·]t0=t−r/c inserts the time delay of r/c into the calculation
results of the second term on the right side of the equation. In
this equation, if the sound source is outside of a closed region,
the array output is theoretically zero.
In practice, the normal derivative to the boundary surface

pressure is obtained from the microphone pair placed normal
to the sphere surface with a distance of Δr, as illustrated in
Fig. 2. That is, we use

∂p(r, Ωi)
∂n

=
p(r1, Ωi) − p(r2,Ωi)

Δr
, (2)

where r1 = r + Δ/2 and r2 = r − Δr/2. Simultaneously,
the sound pressure p(r, Ωi) is obtained as the average of two
sound pressures of the microphone pair

p(r, Ωi) =
p(r1, Ωi) + p(r2, Ωi)

2
. (3)

Moreover, when assuming the incident wave is a plane wave
p(t, ω) = A(ω)ej(ωt−kr) (k = ω/c), the time derivative term
and the time delay operation of [·]t0=t−r/c are replaced by
jkrp(r, Ωi) and e−jkr respectively. As a result, the output
signal is

y = p0−
1
M

M∑
i=1

[
p(r,Ωi)+r

p(r1,Ωi)−p(r2,Ωi)
Δr

+jkrp(r,Ωi)
]

e−jkr.

(4)

3. PROPOSED METHOD BASED ON SPHERICAL
HARMONIC EXPANSION

3.1. Spherical harmonic expansion
The sound pressures p(r, Ω) observed on the sphere can be
transformed to the spherical wave spectrum (spherical har-
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monic expansion coefficients) Pnm(r) by using the spherical
harmonic function Y m

n (Ω) [2].

Pnm(r) =
∫

Ω

p(r,Ω)Y m
n (Ω)∗dΩ. (5)

Here, dΩ = sin θdθdφ. The sound pressures can be also cal-
culated by using the inverse transform,

p(r, Ω) =
∞∑

n=0

n∑
m=−n

Pnm(r)Y m
n (Ω). (6)

The general solution of the sound wave coming from the
outside of the sphere in spherical coordinates is known as [2]

p(r, Ω) =
∞∑

n=0

n∑
m=−n

Anmjn(kr)Y m
n (Ω), (7)

where jn(·) is a spherical Bessel function. Inserting this equa-
tion into (5), the spherical wave spectrum at r is

Pnm(r) = Anmjn(kr). (8)

This equation shows that the spherical wave spectrumPnm(r)
of the incident sound from the outside of the sphere can be
separated into two parts, the spherical Bessel function jn(kr)
that depends on the radial direction and Anm that is indepen-
dent of the radial direction. Using this fact yields the im-
portant interpolated relationship between the spherical wave
spectrum Pnm(r0), which is at the radius of r0(< r), and
Pnm(r).

Pnm(r0) =
jn(kr0)
jn(kr)

Pnm(r). (9)

3.2. Interpolation of sound at the center
From equation (9), the interpolated spherical wave spectrum
at the center (r0 = 0) is,

Pnm(0) =
jn(0)
jn(kr)

Pnm(r). (10)

Because j0(kr) = sin kr
kr , j0(0) is 1. For other order n, for

example n = 1, 2, 3, · · · , jn(0) is 0 [2]. Therefore, we can
use the following relations,

P00(0) =
1

j0(kr)
P00(r), (11)

Pnm(0) = 0 (n,m) �= (0, 0). (12)

Substituting these relationships and Y 0
0 (Ω) = 1/

√
4π into

(6), we obtain

p̂(0) =
1

j0(kr)
1√
4π

P00(r). (13)

By discretizing the spherical surface to M areas, the in-
tegral in (5) can be replaced with a summation. Moreover,
when considering that the unit area size of the sphere is 4π,

P00(r) ∼ 1√
4π

4π

M

M∑
i=1

p(r, Ωi). (14)

If we choose t-design sampling on the sphere (spherical de-
sign with equal quadrature coefficients), this equation will
have high accuracy [13].
Inserting (14) into (13), the interpolated sound pressure at

the center of the sphere can be obtained by

p̂(0) =
1

j0(kr)
1
M

M∑
i=1

p(r, Ωi). (15)

This equation shows that the sound pressure at the center of
the sphere can be interpolated only by the average sound pres-
sure on the surface of the sphere.
Finally, the output signal of our proposed close-talking

microphone array system, which uses the residual between
the observed signal and interpolated signal at the center as the
conventional system does is

ySH = p0 − 1
j0(kr)

1
M

M∑
i=1

p(r, Ωi). (16)

Note that j0(kr) becomes 0 for a certain value of kr. For
such frequencies, we have to inhibit the array processing.
These are known as the “forbidden frequencies” because of
the spherical Bessel zeros [2][14]. To overcome this prob-
lem, we can choose a spherical array with a small radius to
eliminate the Bessel zeroes for speech frequencies. Another
solution that uses a dual-sphere array has been proposed [15].

4. COMPUTER SIMULATIONS

We conducted the computer simulations to compare the per-
formance of the conventional and proposed arrays. Figure
3 shows the 12-element spherical microphone array with a
radius of 5 cm. In this case, there is no spherical Bessel
zero at frequencies below 3.4 kHz. The microphones are lo-
cated on each surface of a regular dodecahedron. The conven-
tional method had to use the microphone pairs on the surfaces
to obtain the normal derivative of the pressures. Therefore,
the conventional method requires twice the number of micro-
phones than the proposed method excepting the center mi-
crophone. In the conventional method, the distance between
the two microphones of the microphone pair was set to 2 mm.
The simulations were conducted at 1, 2, and 3 kHz. The sound
velocity was set to 340 m/s.
Figure 4 shows contour plots of the spatial responses

of the omnidirectional microphone and those of a dipole
(pressure-gradient) microphone, which is a conventional
close-talking microphone. Figure 5 shows the contour plots
of the spatial responses of the arrays. The contours are in 5
dB steps. Because the microphone arrangement is asymmet-
ric for φ = 0 and π/2, we evaluated the spatial responses
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Fig. 3. Twelve-element spherical array

of two surfaces. The right sides of these figures show the
spatial responses at φ = 0, and the left sides show the spatial
responses at φ = π/2. The output level observed at a distance
of 5 cm from the microphone array at the north pole position
was set to 0 dB. The white area in these figures indicates that
the output level was below −40 dB. These results show that
the two methods have the same performances, although the
proposed method uses approximately half the number of mi-
crophones. These results seem to show a similar relationship
as that between the WFS and HOA.
The average gain of the spatial response of the omnidirec-

tional microphone was approximately−9.5 dB at 15 cm from
the array. On the other hand, the proposed and conventional
methods had a spatial average gain at 15 cm of −37 dB, −21
dB, and −11 dB for 1 kHz, 2 kHz, and 3 kHz, respectively.
These results showed that the performances of these close-
talking microphone arrays were very good, especially below
2 kHz (kr = 1.84). The decrease in the performances at high
frequencies seems to be due to spatial aliasing.
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Fig. 4. Simulation results of the spatial responses of (a) om-
nidirectional and (b) dipole microphones.

5. CONCLUSION
A novel close-talking spherical microphone array using the
residual signal between the observed sound pressure and the
interpolated sound pressure based on the spherical harmonic
expansion was proposed. The basic idea is based on a conven-
tional method, which interpolates the sound pressure at the
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Fig. 5. Simulation results of spatial responses, (a)–(c): con-
ventional，(d)–(f): proposed

center position by using the Kirchhoff integral with the sound
pressures, their normal derivatives, and their time derivatives
on the boundary surface. In contrast, our proposed spherical
array interpolates the sound pressure at the center by using
only the sound pressures on the surface and their averaging
process. The computer simulations for the 12-element spher-
ical microphone array with a radius of 5 cm showed that both
methods had almost the same performance, although the pro-
posed method used approximately half the number of micro-
phones compared to the conventional method. These results
seem to be similar to the relationship betweenWFS and HOA.
The computer simulations also showed that the spatial sensi-
tivities of these methods steeply decreased by approximately
11 dB at 2 kHz (kr = 1.84) compared with an omnidirec-
tional microphone.
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