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ABSTRACT

There is substantial interest in developing machine-based
methods that reliably distinguish patients from healthy con-
trols using high dimensional correlation maps known as func-
tional connectomes (FC’s) generated from resting state fMRI.
To address the dimensionality of FC’s, the current body of
work relies on feature selection techniques that are blind to
the spatial structure of the data. In this paper, we propose
to use the fused Lasso regularized support vector machine
to explicitly account for the 6-D structure of the FC (defined
by pairs of points in 3-D brain space). In order to solve the
resulting nonsmooth and large-scale optimization problem,
we introduce a novel and scalable algorithm based on the al-
ternating direction method. Experiments on real resting state
scans show that our approach can recover results that are
more neuroscientifically informative than previous methods.

1. INTRODUCTION

There is substantial interest in establishing neuroimaging-
based biomarkers that reliably distinguish individuals with
psychiatric disorders from healthy individuals [1]. Functional
connectomes (FC’s) generated from resting state fMRI has
emerged as a mainstream approach, offering robust ability to
characterize the network architecture of the brain [2, 3]. FC’s
are typically generated by parcellating the brain into hundreds
of distinct regions, and computing cross-correlation matrices
[4]. However, even with a relatively coarse parcellation with
several hundred regions of interest (ROI), the resulting FC
contains nearly a hundred thousand connections or more,
presenting critical statistical and computational challenges.

In the high dimensional setup, sparsity is a natural as-
sumption that arises in many applications [5, 6]. Indeed, most
existing methods address the dimensionality of FC’s by ap-
plying some form of a priori feature selection (e.g., t-test)
before invoking some “off-the-shelf” classifier (e.g., nearest-
neighbor, support vector machine (SVM), LDA) [3]. Sparsity
promoting regularizers such as Lasso [7] and Elastic-net [§]
may also be considered. However, all these methods above
have a major shortcoming: outside of sparsity, the structure
of the data is not taken into account.

Recently, there has been strong interest in the machine
learning community in designing a convex regularizer that
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promotes structured sparsity [9, 10]. Indeed, spatially in-
formed regularizers have been applied successfully for de-
coding in task-based fMRI, where the goal is to localize in
3-D space the brain regions that become active under an ex-
ternal stimulus [11, 12]. FC’s exhibit rich spatial structure,
as each connection comes from a pair of localized regions in
3-D space, giving each connection a localization in 6-D space
(referred to as “connectome space” hereafter). However, no
framework currently deployed exploits this spatial structure.
Based on these considerations, the main contribution of
this paper is two-fold: (1) to account for the 6-D spatial struc-
ture of FC’s, we propose to use the fused Lasso regularized
SVM (FL-SVM) [13], and (2) we introduce a novel scalable
algorithm based on the alternating direction method [14] for
solving the nonsmooth, large-scale optimization problem that
results from FL-SVM. To the best of our knowledge, this is
the first application of structured sparse methods in the con-
text of disease prediction using FC’s. Experiments on real
resting state scans demonstrate that our method can identify
predictive features that are spatially contiguous in the connec-
tome space, offering an additional layer of interpretability that
could provide new insights about various disease processes.

2. METHODS

FMRI data consist of a time series of three dimensional
volumes imaging the brain, where each 3-D volume en-
compasses around 10, 000~100, 000 voxels. The univariate
time series at each voxel represents a blood oxygen level
dependent (BOLD) signal, an indirect measure of neuronal
activities in the brain. Traditional experiments in the early
years of fMRI research involved task-based studies, but after
it was discovered that the brain is functionally connected at
rest, resting state fMRI became a dominant tool for studying
the network architecture of the brain. As such, we used the
time series from resting state fMRI to generate FC’s, which
are correlation maps that describe brain connectivity.

More precisely, resting state FC’s were produced as fol-
lows. First, 347 spherical nodes are placed throughout the
entire brain over a regularly-spaced grid with a spacing of
18 x 18 x 18 mm; each of these nodes represent an ROI
with a radius of 7.5 mm, which encompasses 30 voxels (the
voxel size is 3 x 3 x 3 mm). Next, for each of these nodes, a
single representative time series is assigned by spatially av-
eraging the BOLD signals falling within the ROIL. Then, a

6030



cross-correlation matrix is generated by computing Pearson’s
correlation coefficient between these representative time se-
ries. Finally, a vector x of length (°;) = 60, 031 is obtained
by extracting the lower-triangular part of the cross-correlation
matrix; this vector is the FC that serves as the feature vector

for disease prediction.

2.1. Fused Lasso Support Vector Machine (FL-SVM)

Our goal is to learn a linear decision function sign ({z, w))
given a set of training input/output pairs {(x;,y;)} -, where
x; € RP represents the FC’s, and y; € {+1} indicates the
diagnostic status of subject ¢. The SVM aims to learn the
weight vector w € RP by minimizing the following problem:

arg min Z C(yi {w, x;)) + R(w) , )]

weRr T

where £ (y; (w, ;) = (1 — y; {w,x;)). is the hinge loss
and R : R? — R, is the regularizer. For compactness, we
introduce the notation Y := diag{y1,- - ,y,} and design
matrix X € R™*P created from stacking the feature vectors
{@;}7, as rows. This allow us to express the loss term in (1)
succinctly by defining a functional £ : R™ — R, which ag-
gregates the total loss L(Y Xw) := 3" | (y; (w, x;)).

In our application, we seek a model that is not only ac-
curate but also interpretable. The standard SVM [15] uses
the ¢3-norm regularizer R(w) = A |w g which is problem-
atic for interpretation since it yields a non-sparse and dense
solution. Sparsity promoting regularizers such as the Lasso
R(w) = A |w], and Elastic-net R(w) = A |wl|, + 3 |wl3
can be used for automatic feature selection [7, 8], but these ap-
proaches do not account for the spatial structure of the FC’s.
To address this issue, we employ the fused Lasso [13].

Fused Lasso was originally designed to encode correla-
tions among successive variables in 1-D, but can be extended
to other situations where there is a natural ordering among the
feature coordinates. This is the case with our 6-D FC’s due to
the grid pattern in the nodes, and the FL-SVM problem reads:

argmin L(Y Xw) + A |w|, +v|Cw]|, , )

weRP

where C' € R®*P denotes the 6-D differencing matrix, and
|Cwl, = 37 1 Yien, lwj — wil is a spatial penalty that
accounts for the 6-D structure in the connectome by penaliz-
ing deviations among the nearest-neighbor edge set N;. Note
that e indicates the total number of unordered pairs of adja-
cent coordinates. To gain a better understanding of \V;, let us
denote (z,y,2) and (2,1, 2") the pair of 3-D points in the
brain that define the 6-D connectome coordinate j. Then, the
first-order neighborhood set of j can be written precisely as
(x +1,y,2,2,y, z'), (x,y, P T z'),
N; = { (zyt1,2z,2y,2), (,y,2,2",y +1,7), }
(x,y,z + l,z',y’7z’), (x,y,z,w’,y’7z’ + 1)

2.2. Optimization: ADMM algorithm

Solving the optimization problem (2) is challenging since the
problem size p is large and the three terms in the cost function

are each non-differentiable. To address these challenges, we
propose a novel and scalable algorithm based on the alternat-
ing direction method of multipliers (ADMM) [14].

ADMM solves problems having the separable structure

min f(Z) + g(g) subjectto AZ+By=0, (3)
.5

where & € RP and § € RY are unknown primal variables,
f:RPF 5> RuU{+mw}and g : R? —» R u {+o0} are closed
convex functions, and A € R°*? and B € R¢*7 are matrices
representing c linear constraints. ADMM exploits the separa-
ble structure in (3) by applying the following updates:
2

2+ — argmin f(Z) + g HACTZ +Bg!" +u® “)
T 2

—(t+1) s = Pl Azt+D) & Bo (t) 2

7 «— argmin g(g) + 3 HAac +By+u 5)
o 2

W) u® 1 (A3 4 Byt ®)

where t denotes the iteration count, u € R€ is the (scaled)
dual variable, and p > 0 is a user defined parameter. The
convergence of the ADMM algorithm has been established in
Theorem 1 of [16], which states that if matrices A and B are
full column-rank and the problem (3) is solvable (i.e., it has
an optimal objective value), the iterations (4)-(6) converges
to the optimal solution. While the parameter p > 0 does not
affect the convergence property of ADMM, it can impact its
convergence speed. We set p = 1 in our implementations.

In order to convert the FL-SVM problem (2) into an
equivalent constrained problem with the ADMM structure
(3), we apply variable splitting [17]. Before we introduce our
variable splitting scheme, we note that as it stands, our algo-
rithm will require us to invert a matrix involving the Laplacian
matrix CT C € RP*P, which is prohibitively large. Although
this matrix is sparse, it has a distorted structure due to the
irregularities in the coordinates of x (see Fig. 1). These irreg-
ularities arise from two reasons: (a) the nodes defining x are
only on the brain, not the entire rectangular field of view, and
(b) x lacks a complete 6-D representation since it only con-
tains the lower-triangular part of the cross-correlation matrix.

To address this issue, we introduce an augmentation ma-
trix A € RP*P whose rows are either the zero vector or an
element from the trivial basis {e; }§=1’ and has the property
AT A = I,,. Furthermore, we define the augmented weight
vector W := Aw, where A rectifies the irregularities in the
coordinates of w (and x) by padding extra zero entries. This
results in a new differencing matrix C € R®*P for w € RP,
whose Laplacian matrix CTC € RP*? has a special structure
known as block-circulant with circulant-blocks (BCCB) (see
Fig. 1), which has important computational advantages.

Finally, by introducing a diagonal masking matrix
B € {0,1}P*?, we have | BCw|; = |Cw|,. Note that this
masking strategy was adopted from the recent work of Alli-
son et al. [18], and has the effect of removing artifacts in-
troduced from data augmentation when computing the spatial
penalty norm ||-|,. This allows us to write out the FL-SVM

6031



N
\\

\\\Q\ L \ .
N\ N\
\\j\i\ \ \
SO\ N
AN N
RN

Fig. 1: Laplacian matrices corresponding to the original data

CTC (left) and the augmented data C7'C (right).

problem (2) in the following equivalent form:
arg min £(Y Xw) + A |w||, +’y||BC~”Aw||1 .

weRP
We propose the following variable splitting scheme to
convert problem (7) into an equivalent constrained problem:
min  L(v1) + A |vz|; + [ Bus], ®
v2,V3,v4 -
st.YXw=v, w=1vy, Cvg=v3, Aw=1v4.

/

Here, the correspondence with the ADMM formulation (3) is:

f(x) =~|Buvs|, T = [w’, vs"]"

)

§(7) = L(v1) + Aozl , 7 =[va", 02", 07",

9

YX 0 —I 0 0 ©)
- I 0 _ 0 —-I 0
A= B = ~
0 I’ 0 0o -C
A 0 0 0o I

The dual variables corresponding to vq,v2,vs, and vy are

written in block form u = [uy?, ua, us?, usT]T. Note

that this formulation satisfies the sufficient conditions for the
ADMM iterations (4)-(6) to converge, as functions f and g
are convex, and matrices A and B are full column-rank.
With the variable splitting scheme (8), the ADMM update
for the primal variable Z (4) decomposes into subproblems

2
w1 — arg min{ HYX'w — (v, — ul(t))H
w 2

o a0 i

Us(t-s-l

) ~ P Soa® — |
«— argmin~y |Bos|, + 5 Hv3 — (Cv4 — us )H
vs3 2
whereas the updates for primal variable ¥ (5) are
v+ — argmin £(vq) + g||v1 — (Y XwD 4 ul(t))Hz
V1
2

«— argmin\ |vz|; + P HU2 - (w(t"‘l) + u2(t)) H
vo 2 2

()

04+ o argamin { | Gos — (03D +ug ) Hj

+ H'U4 — (A'w(tH) + ’U,4(t))§H } .

The closed form solutions for these are provided in Algo-
rithm 1, which outlines the complete ADMM algorithm. We
now demonstrate these updates can be carried out efficiently.

The inverse H ' for the w update (line 4 Alg. 1) can be
converted into an (n x n) inversion problem using the matrix
inversion Lemma, where n is on the order of a hundred in our

Algorithm 1 ADMM algorithm for FL-SVM

1: Initialize variables w, {v1, v2, Vs, va}, {u1, U2, ug, us}
2: Sett = 0, and precompute H ' = (XTX +2I,)7!
3: repeat

4wt H—I{XTyT [0 — uy ]
+ [’Uz(t) - ’u,z(t)] + AT ['U4(t) — ’U,4(t)] }
5: [v3(t+1)]i «— SON&WP ([é (val® — U3(t))]i) ?fB“' =1
€ (0a® —us®)] it B — 0
6: [vl(t+1)]j — Prox, ([YXw(t“) + ul(t)]j)
7. [ogttD], « Soft, ([w(t+1) n u2(t)]k)
8 wa(ttD) (éTé + Iﬁ) 71{5@[@3(“1) +ug®]
+Aw Y + 4, @ | solve via FFT (10)

9: ul(t+1) - ul(t) +Y Xw+l) — vl(t+1)
100 upl*)  up® 4 a(tH]) gy (1)
1wzt ug®) 4 g+ 5«,04(t+1)
12: ,u4(t+1) - u4(t) + Awt+D) — v4(t+1)
132 te—t+1
14: until stopping criterion is met
Note: [-];, [-];, [-]x in line 5-7 indicate vector elements

application. The updates for v1,v2, and vz (line 5-7 Alg. 1)
are all separable across their coordinates and admit element-
wise closed form solutions. Note Soft(t) := t(1 — 7/ |t])+
is the soft-threshold operator, and Prox,,(t) is the proximal
operator [19] corresponding to the hinge-loss:

t ift >1
Prox,e(t) :==<1 ifl—7<t<1
t+7 ift<l-—r71

Finally, the update for v4 (line 8 Alg. 1) can be computed
efficiently using the fast Fourier Transform (FFT). To sup-
press notations, let us define Q := cTcC + I and

b:=CTvs® + ug] + Aw*V) 4 u,®.

As stated earlier, the Laplacian matrix CTC is a BCCB ma-
trix, and consequently, the matrix @ is BCCB as well. It
is well known that a BCCB matrix can be diagonalized as
Q = UY AU, where U is the (6-D) DFT matrix and A is a
diagonal matrix containing the (6-D) DFT coefficients of the
first column of Q. As aresult, the update for v4 can be carried
out efficiently using the (6-D) FFT

Qb= (UMATD) b =ifis(mb) @), (10)

where fft and ifft denote the (6-D) FFT and inverse-FFT oper-
ation, ¢ is a vector containing the diagonal entries of A, and
@ indicates elementwise division.

We note that the ADMM algorithm was also used to solve
FL-SVM in [20] under a different variable splitting setup.
However, their application focuses on 1-D data, where the
Laplacian matrix corresponding to their feature vector is tridi-
agonal with no irregularities present. Furthermore, the vari-
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able splitting scheme they propose requires an iterative al-
gorithm to be used for one of the ADMM subproblems. In
contrast, the variable splitting scheme and the data augmen-
tation strategy we propose allow the ADMM subproblems to
be decoupled in a way that all the updates can be carried out
efficiently and non-iteratively in closed form.

3. EXPERIMENTS

In our experiments, we used the Center for Biomedical
Research Excellence dataset made available by the Mind
Research Network [21]. We analyzed resting state scans
from 121 individuals consisting of 67 healthy controls and
54 schiozophrenic subjects. For preprocessing details, we re-
fer the readers to the extended version of our paper [22].

We compared the performance between the Elastic-net
regularized SVM (EN-SVM) and FL-SVM; EN-SVM was
also solved by ADMM, although the variable splitting and
the optimization steps vary slightly from FL-SVM. The
algorithms were terminated when the relative infeasibility

| Az +BgM| .
max{[[AzO[[[[BgO[} of the ADMM constraint (3) fell below

5 x 102 or the algorithm reached 400 iterations, and 10-fold
cross-validation (CV) was used to evaluate the generalizabil-
ity of the classifiers. All variables were initialized at zero.

A common practice for choosing the regularization pa-
rameters is to select the choice that gives the highest pre-
diction accuracy. However, since our goal is the discovery
and validation of imaging-based biomarkers, we need a model
that offers not only good classification accuracy but also in-
terpretability (i.e., sparsity). We found that the classifiers
achieved a good balance between accuracy and sparsity when
approximately 4% of the features (2,400) were selected out
of p = 60,031. More specifically, EN-SVM and FL-SVM
achieved classification accuracies of 71.1% and 74.4% when
the regularization parameters {)\,~} were set at {279 275}
and {279,272}, and averages of 2180 and 2387 features
were used across the CV folds. Hence, we further analyzed
the classifiers obtained from these regularization parameters.

During CV, we learn a different weight vector for each
partitioning of the dataset. In order to obtain a single repre-
sentative weight vector, we re-trained the classifier using the
entire dataset (121 subjects). For visualization and interpreta-
tion, we grouped the indices of these weight vectors according
to the network parcellation scheme proposed by Yeo et al. in
[23] (see Table 1), and reshaped them into 347 x 347 sym-
metric matrices with zeroes on the diagonal. Furthermore, we
generated trinary representations of these matrices in order to
highlight their support structures, where red, blue, and white
denotes positive, negative, and zero entries respectively. The
resulting matrices are displayed in Fig. 2.

From these figures, one can observe that EN-SVM yields
features that are scattered throughout the connectome space,
which can be problematic for interpretation. On the other
hand, FL-SVM recovered much more systematic sparsity pat-

EN-SVM FL-SVM
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Fig. 2: Weight vectors learned using the full dataset. Top:
heatmap of the weight vectors. Bottom: support structures of
the weight vector, along with the degree plot of the nodes.

1 2 3 45 6 7 %012 x T

Network Membership Table (x is “unlabeled”)

1. Visual 2. Somatomotor 3. Dorsal Attention
4. Ventral Attention 5. Limbic 6. Frontoparietal
7. Default 8. Striatum 9. Amygdala

10. Hippocampus ~ 11. Thalamus 12. Cerebellum

Table 1: Network parcellation of the brain proposed in [23].

terns with multiple contiguous clusters, indicating that the
predictive regions are compactly localized in the connectome
space (e.g., see the rich connectivity patterns in the intra-
visual and intra-cerebellum network). Moreover, FL-SVM
recovers multiple highly connected hubs, which is an exam-
ple of a spatially contiguous cluster in the connectome space.
In order to emphasize this point, the bottom row in Fig. 2
also plots the degree of the nodes, i.e., the number of connec-
tions a node make with the rest of the network. This degree
plot indicates that the frontoparietal network and cerebellum
(among other regions) exhibited increased node degree, in-
dicating diffuse connectivity alterations with other networks.
Interestingly, these networks are among the most commonly
implicated in schizophrenia [24].

4. CONCLUSION

We introduced a classification framework that explicitly ac-
counts for the 6-D spatial structure in the FC via the fused
Lasso SVM, which is solved using a novel alternating direc-
tion algorithm. We demonstrated that our method recovers
sparse and highly interpretable feature patterns while main-
taining predictive power, and thus could generate new insights
into how psychiatric disorders impact brain networks.
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