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ABSTRACT
In signal processing applications of harmonic-structured sig-
nals, estimates of the fundamental frequency and number of
harmonics are often necessary. In real scenarios, a desired
signal is contaminated by different levels of noise and inter-
ferers, which complicate the estimation of the signal param-
eters. In this paper, we present an estimation procedure for
harmonic-structured signals in situations with strong interfer-
ence using spatial filtering, or beamforming. We jointly es-
timate the fundamental frequency and the constrained model
order through the output of the beamformers. Besides that,
we extend this procedure to account for inharmonicity using
unconstrained model order estimation. The simulations show
that beamforming improves the performance of the joint esti-
mates of fundamental frequency and the number of harmonics
in low signal to interference (SIR) levels, and an experiment
on a trumpet signal show the applicability on real signals.

Index Terms— Harmonic signal, pitch estimation, model
order estimation, microphone arrays, frequency-domain
beamforming.

1. INTRODUCTION

In real life, we often have multiple signal sources present at
the same time, which has a detrimental impact on the quality
and intelligibility of a recorded speech signal. We can im-
prove the quality of a desired signal by choosing an appropri-
ate enhancement method, which can be categorized in three
different groups: statistical, filtering, and subspace methods
[1]. In the enhancement of harmonic-structured signals as
considered here, e.g., voiced speech, both the fundamental
frequency and number of harmonics estimates are necessary
in filter designs (for example [2–4]). Therefore, we require to
estimate these parameters. The estimation of the fundamental
frequency, or pitch in audio signal processing, is a challenging
problem with applications in enhancement, separation, clas-
sification, compression, etc., and different methods have been
investigated in the single-channel case [1, 5]. The estimation
of number of harmonics is another problem in enhancement
of harmonic-structured signals. This integer-valued param-
eter relating to the number of sinusoidal components must
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be estimated from the received signals to yield accurate pitch
estimates and high-quality enhancement, and some methods
have been investigated in the single-channel case [6].

In most of the state-of-the-art methods for fundamental
frequency and number of harmonics estimations, the desired
signal is assumed to be degraded by additive white Gaussian
noise [7–10]. For example, the Markov-like weighted least-
squares (WLS) [11] (see also [1,12]) and the maximum a pos-
teriori (MAP) [6,13] methods are fundamental frequency and
number of harmonics estimators for only one signal source.
In a situation with the presence of interference having the
harmonic structure, which is very common, some methods
are available to estimate the parameters of multiple signal
sources [1]. In these methods, the basic assumption is that the
desired signal has higher power than the interferers [2, 14],
something that is not always the case. Besides that, multiple
harmonic-structured signals with spectral overlap may cause a
wrong estimate of the fundamental frequency and the number
of harmonics. Furthermore, the inharmonicity problem [15],
which is the phenomenon that the frequencies of the harmon-
ics are not exact integers of a fundamental frequency, results
in a model mismatch, and leads to biased parameter estimates,
e.g., in stiff-stringed instruments.

Exploiting spatial separation is a solution to separate mul-
tiple signals using multiple microphones, and beamforming is
one such technique to estimate the signal arriving from the de-
sired direction [16] using different source localization meth-
ods which have been investigated in [17]. In this paper, we
estimate both the fundamental frequency and the number of
harmonics, which we call the model order, of a harmonic-
structured signal using a beamforming technique to separate
the desired signal from high power interferers, which are spa-
tially separated, e.g., by using broadband minimum variance
distortionless response (MVDR) [18, 19] beamforming. We
can also estimate the model order of the desired signal from
the output of the beamformer [20] using the MAP method
with the constrained harmonic-model, consisting of a fun-
damental frequency and its integers. Because of the prob-
lem of inharmonicity and harmonic frequencies mismatch,
we extend this method for the unconstrained model, consist-
ing of independent sinusoidal components, to estimate both
the fundamental frequency and model order. Then the funda-
mental frequency estimate will be performed using the WLS
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method [11].
The rest of this paper is organized as follows. In Sec-

tion 2, we introduce the multi-source signal model that the
work is based on and apply it in beamforming. In Section 3,
we derive the constrained and unconstrained model order and
fundamental frequency estimates, and then explore the results
of simulations in Section 4. In closing, the work is discussed
in Section 5 along with its relation to state-of-the-art.

2. PROBLEM FORMULATION

2.1. Signal model

We consider N independent sources of harmonic acoustic
waves, which are placed at different spatial positions, that
propagate acoustic waves from their respective direction of
arrival (DOA), i.e., θn for n = 1, . . . , N , relative to a receiver.
We assume a microphone array with a set of M omnidirec-
tional microphones receives these acoustic waves besides
random noise, i.e., ym(t) and vm(t) for m = 1, . . . ,M .
Then, we model the combination of harmonic-structured sig-
nal sources, i.e., xn(t) =

∑Ln

l=1 αn,l e
j (lωn t+ϕn,l) that ωn

is the fundamental frequency with Ln number of harmonics
with the magnitude of αn,l and phase of ϕn,l,

ym(t) =

N∑
n=1

xn(t) e−ωn∆τm,n + vm(t), (1)

where ∆τm,n is the time difference of arrival between the
mth and the first microphone for the nth source. By ex-
pressing the signal model (1) in the frequency-domain vec-
tor notation [19], the received broadband signals Y(ω) =
[Y1(ω) . . . YM (ω) ]T are formulated as functions of the steer-
ing vector d(θn, ω), signal sources Xn(ω), and noise V(ω),
defined similar to Y(ω), as

Y(ω) =

N∑
n=1

d(θn, ω)Xn(ω) + V(ω), (2)

where the steering vector is the set of phase shifts between
microphones defined at each subband by choosing the first
microphone as the reference

d(θn, ω) = [ 1 e−ω∆τ2,n · · · e−ω∆τM,n ]T. (3)

With the aim of the spatial source separation, we can write the
spatial correlation matrix, by the assumption of uncorrelated
signal sources and noise, as

RY(ω) = E{Y(ω) YH(ω)}

=

N∑
n=1

d(θn, ω)JXn
(ω)dH(θn, ω) + RV(ω), (4)

where E{·} denotes mathematical expectation, and the su-
perscript H the transpose-conjugate operator. We define

JXn
(ω) = E{|Xn(ω)|2} as the subband power of each

signal source, and the noise correlation matrix as RV(ω) =
E{V(ω) VH(ω)}.

2.2. Spatial filtering

All the complex values of the microphone outputs at the sub-
band ω are applied to a complex-valued spatial filter H(θ, ω),
or a beamformer as we refer to it, of the length M at each
candidate direction θ subject to HH(θ, ω)d(θ, ω) = 1. In
general, the output signal will be

Z(θ, ω) = HH(θ, ω)Y(ω), (5)

and the output power of the designed filters is

JZ(θ, ω) = E{Z(θ, ω) ZH(θ, ω)}
= HH(θ, ω)RY(ω)H(θ, ω). (6)

By considering X1(ω) as the desired signal, and substituting
(4) into (6) at the direction of the desired signal, i.e., θ1, we
acquire the output power of the beamformer as

JZ(θ1,ω) = JX1(ω) + HH(θ1, ω)RV(ω)H(θ1, ω)

+

N∑
n=2

HH(θ1, ω)d(θn, ω)JXn
(ω)dH(θn, ω)H(θ1, ω)

= JX1
(ω) + Ψ(θ1, ω), (7)

where Ψ(θ1, ω) is a residual noise-plus-interference after fil-
tering. The broadband output power of the filter, and the
broadband output power of the noise-plus-interference are, re-
spectively,

JZ(θ) =
1

2π

∫ 2π

0

JZ(θ, ω)dω, (8)

Ψ(θ1) =
1

2π

∫ 2π

0

Ψ(θ1, ω)dω = JZ(θ1)− JX1 , (9)

where JX1 is the broadband power of the desired signal.
The delay-and-sum (DS) beamformer is designed based

on the principle that the directivity pattern of the filter is
steered to the DOA of interest, i.e., HDS(θ, ω) = d(θ, ω)/M ,
and the desired signal can be filtered in the composition of
different signals (2) depending on the respective DOA. Be-
sides the directivity pattern criteria, the minimum variance
distortionless response (MVDR) beamformer is designed to
minimize the output power

min
H(θ,ω)

HH(θ, ω)RY(ω)H(θ, ω) (10)

s.t. HH(θ, ω)d(θ, ω) = 1,

then the optimal MVDR filter is given by [21]

HMVDR(θ, ω) =
R−1

Y (ω)d(θ, ω)

dH(θ, ω)R−1
Y (ω)d(θ, ω)

. (11)
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3. PROPOSED METHOD

The signal source Xn with an integer number of harmonics,
i.e., Ln, can be modeled in two ways: the constrained (C)
harmonic-model that is the integration of integer frequency
coefficients relating to the fundamental frequency ωn, i.e.,

XC
n(ωn) = [ Xn(ωn) Xn(2ωn) ... Xn(LC

nωn) ]T, (12)

and the unconstrained (UC) model that is the integer number
of independent periodic signals, i.e.,

XUC
n (Ωn) = [ Xn(ωn,1)Xn(ωn,2) ... Xn(ωn,LUC

n
) ]T, (13)

where Ωn = [ ωn,1 ωn,2 ... ωn,LUC
n

]T is a set of unconstrained
frequencies. By the assumption of two models, the power of
the desired signal can be estimated as

JC
X1

(ω1) = 2 ‖ XC
1 (ω1) ‖22, (14)

JUC
X1

(Ω1) = 2 ‖ XUC
1 (Ω1) ‖22. (15)

We can estimate the model order of a harmonic signal
from the output power of a beamformer at the desired di-
rection by minimizing the broadband noise power [20]. For
both the constrained and unconstrained models in (12) and
(13), we write the broadband output power of the noise-plus-
interference from (9) like

ΨC(θ1) = JZ(θ1)− JC
X1

(ω1), (16)

ΨUC(θ1) = JZ(θ1)− JUC
X1

(Ω1). (17)

With the assumption of white Gaussian noise, we can jointly
estimate the fundamental frequency and the number of con-
strained harmonics using the MAP method in model order
estimation [1, 6] as

(L̂C
1 , ω̂

C
1 ) ≈ arg min

LC
1,ω1

{
N ln[ΨC(θ1)] +

3

2
lnN + LC

1 lnN
}
,

(18)

which consists of the log-likelihood function of the noise-
plus-interference and the penalty part. The penalty part is es-
timated through the normalization of the Fisher information
matrix for a candidate fundamental frequency and L1 related
amplitudes and phases [14]. We can extend this method for
estimating the number of independent sinusoids and the re-
lated amplitudes and phases, i.e.,

(L̂UC
1 , Ω̂1) ≈ arg min

LUC
1 ,Ω1

{
N ln[ΨUC(θ1)] +

5

2
LUC

1 lnN
}
.

(19)

To estimate the fundamental frequency that has the best match
to the frequency estimates obtained using the unconstrained
model, i.e., Ω̂1, we apply the WLS method [11]:

ω̂UC
1 =

∑L̂UC

l=1 l |X1(ω1,l)|2 ω1,l∑L̂UC

l=1 l
2 |X1(ω1,l)|2

. (20)
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Fig. 1. Performance of the model order and the fundamental
frequency estimators for different SIRs [dB], with SNR = 20
dB, and ∆ωn/2π = 0.00025.
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Fig. 2. Performance of the model order and the fundamental
frequency estimators for different ∆ωn/2π, with SNR = 20
dB, and SIR = −1.5 dB.

4. SIMULATION RESULTS

In the following, we evaluate the proposed method and com-
pare the results with single-channel (SC) results in different
experiments using synthetic data, and also in a simulation
with a real trumpet sound. Then, we measure the root mean
square errors (RMSEs) of the fundamental frequency and per-
centage of correctly model order estimates from 200 Monte-
Carlo simulations. In all simulations, we place two synthetic
signals at θ1 = 60◦ and θ2 = 40◦, where ω1/2π = 0.0225,
L1 = 5 with unit amplitudes, and ω2/2π = 0.0275, L2 = 7,
with equal amplitudes depending on signal to interference ra-
tio (SIR) levels, and the sampling frequency is fs = 8.0 kHz.
These harmonic-structured signals are simulated like Ω1 =
[ (ω1 +∆ω1,1) (2ω1 +∆ω1,2) ... (L1ωn+∆ω1,L1

) ]T, where
the ∆ω1,l is a normal distribution of the frequencies with
a variance of zero for simulating the constrained harmonic-
model, and a non-zero variance for the unconstrained model
with perturbed harmonics.

We model a uniform linear array (ULA) consisting of
M = 10 omnidirectional microphones, for which the dis-
tance between two successive sensors is δ = 0.04 m (smaller
than half of the minimum wavelength δ ≤ λmin/2), and
add independent white Gaussian noise to each microphone
depending on signal to noise ratio (SNR) levels. The time
differences of arrival is ∆τm,n = (m− 1)δ sin(θn)/c, where
the wave propagation speed is assumed to be c = 343.2 m/s.
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Fig. 3. Performance of the model order and the fundamental
frequency estimators for different SNRs [dB], with ∆ωn/2π
= 0.00025, and SIR = −1.5 dB.
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Fig. 4. Performance of the model order and the fundamental
frequency estimators using different number of microphones,
with ∆ωn/2π = 0.00025, SNR = 10 dB, and SIR = −1.5 dB.

The mathematical expectation is estimated by time averaging
of B temporal frames [20, 22]. In the MVDR beamforming
design (11), the full rank correlation matrix can be guaran-
teed by choosing B ≥ M , so that, we choose B = 30 in all
simulations.

First, the spectral amplitudes of each subband are esti-
mated using a 512 point discrete Fourier transform (DFT).
Then, for spectral estimation with large frequency grids, the
65536 point DFT is taken from the zero-padded inverse-DFT
of the output signal from the beamformers, and the broadband
output power in (18) and (19) are normalized like in [20]. Fig-
ure 1 shows that the fundamental frequency and the model
order estimation methods are performed in low SIRs using
beamforming, and the MVDR beamformer performs better
than the DS beamformer. Figure 2 indicates that the uncon-
strained model order estimate is more accurate in comparison
with the constrained harmonic-model in high ranges of per-
turbed harmonics, ∆ωn/2π ≥ 0.001. The MVDR beam-
former outperforms the DS beamformer in low SNRs and
number of microphones in figures 3 and 4, respectively. We
also conduct an experiment on a trumpet signal with vibrato,
as the desired signal, which is corrupted by a synthetic sig-
nal similar to in the previous simulations and white Gaus-
sian noise, i.e., SIR = −1.5 dB and SNR = 10 dB. Figure
5 indicates that the unconstrained model order has better es-
timates than the other model, and the fundamental frequency
estimates via the constrained model has better results, com-

Fig. 5. According to the order of plots from top to down: the
spectrogram of a clean trumpet signal |X1(ω)|, the distorted
signal |Y1(ω)|, the estimates of number of harmonics and the
fundamental frequency.

pared with the clean signal estimates using the constrained
harmonic-model.

5. DISCUSSION AND CONCLUSION

In this paper, we improve the fundamental frequency and
model order estimates of harmonic-structured signals in situa-
tions with low SIR. In the multi-channel parameter estimation
methods in [10] and [8], it has been considered that a desired
signal is contaminated only by Gaussian noise, although in
situations with spatially separated interference signals, which
are likely in real scenarios, the joint fundamental frequency
and constrained model order estimates [14] can be facilitated
using spatial filters [20]. Simulations show beamforming will
yield better results than the corresponding single-channel
estimates, and the optimal MVDR beamformer outperforms
the DS, as an example, for closely spaced signal sources.
Moreover, through the MAP model order estimation with
a uniform probability distribution of random candidates,
a general unconstrained model is approached instead of a
particular model in [15]. To approach high-resolution of
spectral estimates with a minimum variance capability, the
DFT method, which we used in our experiments, can be re-
placed by different methods [5], e.g., unconstrained model
extension of the methods in [14] and [23], note that also in
the two-dimensional MVDR filter design [23].

6008



6. REFERENCES

[1] M. G. Christensen and A. Jakobsson, “Multi-pitch esti-
mation,” Synthesis Lectures on Speech and Audio Pro-
cessing, vol. 5, no. 1, pp. 1–160, 2009.

[2] M. G. Christensen and A. Jakobsson, “Optimal filter
designs for separating and enhancing periodic signals,”
IEEE Trans. Signal Process., vol. 58, pp. 5969–5983,
Dec. 2010.

[3] A. Nehorai and B. Porat, “Adaptive comb filtering for
harmonic signal enhancement,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 34, pp. 1124–1138, Oct.
1986.

[4] W. Jin, X. Liu, M. Scordilis, and L. Han, “Speech en-
hancement using harmonic emphasis and adaptive comb
filtering,” IEEE Trans. Audio, Speech, and Language
Process., vol. 18, pp. 356–368, Feb 2010.

[5] P. Stoica and R. Moses, Spectral Analysis of Signals.
Pearson Education, Inc., 2005.

[6] P. Stoica and Y. Selen, “Model-order selection: a re-
view of information criterion rules,” IEEE Signal Pro-
cess. Mag., vol. 21, pp. 36–47, Jul. 2004.

[7] J. Tabrikian, S. Dubnov, and Y. Dickalov, “Maximum
a-posteriori probability pitch tracking in noisy environ-
ments using harmonic model,” IEEE Trans. Speech Au-
dio Process., vol. 12, pp. 76 – 87, Jan. 2004.

[8] Z. Zhou, H. So, and M. Christensen, “Parametric model-
ing for damped sinusoids from multiple channels,” IEEE
Trans. Signal Process., vol. 61, pp. 3895–3907, Aug
2013.

[9] J. Benesty, J. Chen, Y. Huang, and I. Cohen, Noise Re-
duction in Speech Processing. Springer-Verlag, 2009.

[10] M. G. Christensen, “Multi-channel maximum likelihood
pitch estimation,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., pp. 409–412, Mar. 2012.

[11] H. Li, P. Stoica, and J. Li, “Computationally efficient pa-
rameter estimation for harmonic sinusoidal signals,” El-
sevier Signal Process., vol. 80(9), pp. 1937–1944, 2000.

[12] M. G. Christensen, P. Vera-Candeas, S. D. Somasun-
daram, and A. Jakobsson, “Robust subspace-based fun-
damental frequency estimation,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., pp. 101–104,
Mar. 2008.

[13] P. M. Djuric, “Asymptotic MAP criteria for model se-
lection,” IEEE Trans. Signal Process., vol. 46, pp. 2726
–2735, Oct. 1998.

[14] M. G. Christensen, J. L. Højvang, A. Jakobsson, and
S. H. Jensen, “Joint fundamental frequency and order
estimation using optimal filtering,” EURASIP J. on Ap-
plied Signal Processing, vol. 2011, pp. 1–18, Jun. 2011.

[15] T. D. Rossing, F. R. Moore, and P. A. Wheeler, The Sci-
ence of Sound. Addison Wesley, 3 ed., 2002.

[16] B. D. Van Veen and K. M. Buckley, “Beamforming: a
versatile approach to spatial filtering,” IEEE ASSP Mag.,
vol. 5, pp. 4–24, Apr. 1988.

[17] M. S. Brandstein and H. Silverman, “A practical
methodology for speech source localization with micro-
phone arrays,” Comput. Speech Language, 1997.

[18] J. Capon, “High-resolution frequency-wavenumber
spectrum analysis,” Proc. IEEE, vol. 57, pp. 1408–1418,
Aug. 1969.

[19] J. Benesty, J. Chen, and E. A. P. Habets, Speech En-
hancement in the STFT Domain, vol. 5. Springer, 2012.

[20] S. Karimian-Azari, J. R. Jensen, and M. G. Christensen,
“Fast joint DOA and pitch estimation using a broadband
MVDR beamformer,” in Proc. European Signal Pro-
cessing Conf., Sept. 2013.

[21] J. Benesty, Y. Huang, and J. Chen, Microphone Array
Signal Processing, vol. 1. Springer-Verlag, 2008.

[22] M. E. Lockwood and et al., “Performance of time-
and frequency-domain binaural beamformers based on
recorded signals from real rooms,” The Journal of the
Acoustical Society of America, vol. 115, pp. 379–391,
Jan. 2004.

[23] A. Jakobsson, S. L. Jr. Marple, and P. Stoica, “Computa-
tionally efficient two-dimensional Capon spectrum anal-
ysis,” IEEE Trans. Signal Process., vol. 48, pp. 2651–
2661, Sep. 2000.

6009


