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ABSTRACT

Independent component analysis (ICA) is a widely used tech-
nique for extracting latent (unobserved) source signals from
observed multidimensional measurements. In this paper we
construct a fast and robust bootstrap (FRB) method for test-
ing hypotheses on elements of the mixing matrix in the ICA
model. The FRB method can be devised for estimators which
are solutions to fixed-point (FP) equations. In this paper we
develop FRB test for the widely popular FastICA estimator.
The developed test can be used in real-world ICA analysis
of high-dimensional data sets seen e.g. in big data analysis,
as it avoids the common obstacles of conventional bootstrap
such as immense computational cost and lack of robustness.
Moreover, instability and convergence problems of the Fas-
tICA algorithm when applied to bootstrap data are prevented.
Simulations and examples illustrate the usefulness and valid-
ity of the developed test.

Index Terms— bootstrap, FastICA, hypothesis testing,
independent component analysis

1. INTRODUCTION

Independent component analysis (ICA) [1] is a widely used
multivariate analysis technique with applications in many
diverse fields. Up to date, the methodological (estimation)
framework of ICA is mature and very well developed, yet
the inference (hypothesis testing) framework of ICA is still
in its infancy. In many ICA problems, not all source signals
are present in all recording mixtures. Propagation of a source
signal may be limited to a few sensors in the vicinity of the
source-of-interest and sensors farther apart may not observe
that source (MEG is a good example of such sensing modal-
ity). Therefore tests for hypotheses on the coefficients of the
mixing matrix are needed to investigate contribution of a spe-
cific source signal-of-interest onto a specific mixture variable
which in turn reveals sparsity of the ICA mixing matrix. Such
tests can have variety of applications as is outlined in [2, 3].
In this paper, we develop hypothesis tests on the coefficients
of the mixing matrix of the linear ICA model using a fast and
robust bootstrap (FRB) [5, 6, 7] scheme. The FRB method is
applicable for any estimator that can be represented in form
of fixed-point (FP) equations. Here we develop the method

for the widely popular FastICA estimator [1, 4].
Recall that in the linear ICA model, the observed random

vector, x ∈ Rd is a linear mixture of unobserved random
source vector s = (s1, . . . , sd)> possessing statistically inde-
pendent components (IC’s), i.e.,

x = As = a1s1 + · · ·+ adsd, (1)

where A = (a1 · · · ad) is the unknown full rank d × d mix-
ing matrix whose coefficients aij = [A]ij represent the con-
tribution of the jth source sj onto the ith mixture variable xi
(i, j ∈ {1, . . . , d}). Given a data set X = (x1 · · · xn) of
n i.i.d. random vectors from the ICA model (1), the goal
is to estimate the unknown demixing matrix W = A−1 =
(w1 · · · wd)>, whose (transposed) row vector wi is the ith
demixing vector. The data x is centered, i.e. has zero mean,
which also implies that E[s] = 0. A limitation of ICA is
that for identifiablity of the demixing matrix (up to sign, scale
and permutation ambiguity of the demixing vectors), at most
one source is allowed to possess a Gaussian distribution [1].
Furthermore, due to scaling ambiguity, we can adopt the con-
vention that the sources are of unit variance, i.e., E[s2i ] = 1
for i = 1, . . . , d. Above, we have assumed that the number
of mixtures equals the number of sources. This is not a lim-
itation since the dimensionality of x can be reduced e.g., by
Principal Component Analysis (PCA).

In this paper, we develop bootstrap tests for hypothesis
H0 : aij = 0 vs H1 : aij 6= 0. Bootstrap is a modern sta-
tistical inference tool based on data resampling and it has be-
come an increasingly important tool in modern data analysis;
see text-books [8, 9, 11] for more details. For example, a con-
ventional bootstrap test of level α rejects the null hypothesis
if the 100(1 − α)% confidence interval formed by the boot-
strap distribution of âij does not contain 0. Such a method is
computationally impractical for high-dimensional (HD) data
since it requires that the FastICA estimator Â = Ŵ−1 is cal-
culated for several thousands of HD bootstrap samples. On
the other hand, tests developed in [2, 3] based on the asymp-
totic behavior of FastICA estimator perform poorly when the
sample size is of the same magnitude as the dimension. More-
over, for real-world data, the ICA model can be at best only
approximately true, and thus validity of tests based on asymp-
totic results can be questioned. Another problem is instability
and convergence problems of the FastICA algorithm when ap-
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plied to high-dimensional data sets. The developed FRB test
avoids these problems: it is fast to compute, more robust and
avoids the common convergence problems as the estimator
need not be (re)computed for each bootstrap sample.

The paper is organized as follows. In Section 2, the FRB
method and the FastICA estimator are reviewed. It is also
shown that the FastICA estimator can be expressed as a so-
lution to FP equation. Conventional bootstrap hypothesis test
(e.g., [8, 9]) using FastICA estimator is described in Section 3
followed by a construction of FRB hypothesis test in Sec-
tion 4. Section 5 provides simulation examples and Section 6
concludes.

Relations to prior work: References [2, 3] construct
tests based on asymptotic (normality) approximation of Fas-
tICA estimator. Up to our best knowledge, this paper provides
first contribution of bootstrap tests for purposes of testing hy-
potheses on elements of the mixing matrix.

2. PRELIMINARIES

2.1. The FRB method

Let θ̂n ∈ Rm be an estimator of parameter of interest θ ∈ Rm

based on data set X = (x1 · · · xn). Throughout the paper,
X∗ = (x∗1 · · · x∗n) denotes a bootstrap sample which is ob-
tained by resampling with replacement from the columns of
X. Compared with the conventional bootstrap, the fast and ro-
bust bootstrap method [5, 6] is computationally efficient and
robust to outliers. It is applicable for estimators θ̂n ∈ Rm

that can be expressed as a solution to a system of smooth FP
equations θ̂n = Q(θ̂n;X), where Q : Rm → Rm. The boot-
strap replicated estimator θ̂

∗
n then solves θ̂

∗
n = Q(θ̂

∗
n;X∗),

where the functionQ is same as above but now dependent on
the bootstrap sample X∗. Then, instead of computing θ̂

∗
n, we

compute the approximation

θ̂
1∗
n = Q(θ̂n;X∗), (2)

which is considered as a one-step estimator of θ̂
∗
n with initial

value θ̂n. In conventional bootstrap, one uses the distribution
of θ̂

∗
n to estimate the sampling distribution of θ̂n. Since the

distribution of the one-step estimator θ̂
1∗
n does not accurately

reflect the sampling variability of θ̂, but typically underesti-
mates it, a linear correction is applied as follows:

θ̂
R∗
n = θ̂n +

[
I−∇Q(θ̂n;X)

]−1(
θ̂
1∗
n − θ̂n

)
, (3)

where ∇Q (·) ∈ Rm×m is the matrix of partial derivatives

w.r.t. θ̂n. Then under sufficient regularity conditions, θ̂
R∗
n

will be estimating the same limiting distribution as the actual
bootstrap replications θ̂

∗
n do. In most applications, θ̂

R∗
n is not

only much easier to compute than θ̂
∗
n, but numerically more

stable and robust; see [5, 6, 7] for details.

2.2. FastICA

Let us first recall the principles of the deflation-based Fas-
tICA, hereafter referred to as FastICA. We then show that Fas-
tICA estimator can be expressed as a solution to a FP equa-
tion. Our derivations and notations follow [10].

Let C = E[xx>] denote the positive definite symmetric
d × d covariance matrix of x. We define the inner product
in the vector space Rd as 〈w,v〉 = w>Cv. FastICA demix-
ing vector w (a transposed row vector of the demixing ma-
trix) is defined as a maximizer of a non-Gaussianity measure
|E
[
G(w>x)

]
|, whereG can be any twice continuously differ-

entiable nonlinear and nonquadratic function with G(0) = 0;
see [1, Chapter 8]. We write g = G′ and g′ = G′′ for the 1st
and 2nd derivative of G respectively, where g is referred to
as the ICA nonlinearity. Then at the kth deflation stage, the
maximum of |E

[
G(w>x)

]
| is searched under the unit-norm

constraint ‖w‖2 = w>Cw = 1 (which implies unit variance
of the sources) and orthogonality-constraint with the previ-
ously found demixing vectors, i.e., 〈w,wi〉 = w>Cwi = 0.
Thus at the kth deflation stage, the FastICA estimator wk

maximizes the Lagrangian

L(w;λ1, . . . , λk) =

|E
[
G(w>x)

]
| − λk

2
(w>Cw − 1)−

k−1∑
i=1

λiw
>Cwi,

where λ1, . . . , λk are the Lagrange multipliers. Hence the so-
lution wk, needs to verify the following estimating equation
(obtained by setting the gradient of the Lagrangian w.r.t. w to
zero)

E
[
g(w>k x)x

]
− λkCwk −

k−1∑
i=1

λiCwi = 0,

where λi’s are found to be λi = E
[
g(w>k x)(w>i x)

]
. This

equation can be rewritten as FP equation

wk =
1

λk
Π⊥k−1C

−1mk, (4)

where mk = E[g
(
w>k x

)
x] and

Π⊥k−1 = I−
k−1∑
i=1

wiw
>
i C = I−

k−1∑
i=1

〈wi, ·〉wi

is an orthogonal projection operator that project onto the or-
thogonal complement of the subspace (of the inner product
space) spanned by the previously found demixing vectors
w1, . . . ,wk−1.

3. THE CLASSICAL BOOTSTRAP TEST FOR ICA

Suppose the FastICA algorithm is run to find an estimate of
the demixing matrix Ŵ, thus giving an estimate of the mix-
ing matrix as Â = Ŵ−1. Let us recall some properties of
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FastICA that need to be considered when constructing a boot-
strap procedure. First, recall from [10] that the accuracy of
Ŵ is heavily influenced by the extraction order of demixing
vectors. In other words, the distribution of Ŵ differs from
one specific order of source extraction to another. Hence it
is important that for each bootstrap sample X∗, the extrac-
tion order of the sources remains the same as for the original
FastICA demixing matrix estimator Ŵ. The chance of main-
taining the same order of extraction can be increased by using
the original Ŵ as the initial guess for the FastICA algorithm
when applied for the bootstrap sample X∗. Nevertheless, if
the order of extraction is different from Ŵ, one should dis-
card the case and run the FastICA algorithm again for a new
bootstrap sample. Note that as the dimension d of the data in-
creases, the probability of discarding bootstrap samples tends
to increase as well. Second, due to ICA ambiguities, the sign
of the demixing vectors may differ. Thus, after verifying that
the same extraction order was found when running the algo-
rithm for the bootstrap sample, one needs to fix the signs of
the demixing vectors to match the signs of Ŵ. Third, when
applied to bootstrap data, it is not uncommon that the FastICA
algorithm exhibits convergence problems. In such cases, an-
other bootstrap sample needs to be drawn, until the algorithm
converges to a non-singular solution (with right extraction or-
der).

Considering the above obstacles and given that several
thousands bootstrap samples are needed for hypothesis test-
ing, it is clear that the conventional bootstrap does not provide
a feasible solution especially for high-dimensional real-world
data sets.

4. THE FRB TEST FOR ICA

Based on equation (4), at finite samples, the FastICA esti-
mator of demixing vector ŵk solves the FP equation ŵk =
Q(ŵk;X) where:

Q (ŵk;X) =
1

λ̂k
Π̂⊥k−1Ĉ

−1
m̂k,

Π̂⊥k−1 = I −
∑k−1

i=1 ŵiŵ
>
i Ĉ and m̂k = EFn

[
g
(
ŵ>k x

)
x
]
.

Here a notation of the form EFn [q(x)] (resp. EF∗
n

[q(x∗)])
for some function q denotes sample averages over data
set x1, · · · ,xn (resp. bootstrap data x∗1, · · · ,x∗n), i.e.,
EFn

[q(x)] = 1
n

∑n
i=1 q(xi). The one-step estimator as in

(2) is now

ŵ1∗
k =

1

λ̂∗k
Π̂∗⊥k−1(Ĉ

∗
)−1m̂∗k, (5)

where Ĉ∗ = EF∗
n

[
x∗x∗>] is the sample covariance matrix

based on the bootstrap sample X∗, m̂∗k = EF∗
n

[g
(
ŵ>k x

∗)x∗]
and Π̂∗⊥k−1 = I −

∑k−1
i=1 ŵR∗

i (ŵR∗
i )>Ĉ

∗
. The FRB estimate

is then

ŵR∗
k = ŵk + [I−∇ŵk

Q(ŵk;X)]
−1 (

ŵ1∗
k − ŵk

)
, (6)

Algorithm 1 The FRB test based on FastICA
Input: Data set X, FastICA estimate Ŵ based on X, number of
bootstrap samplesB, levelα of the test. Output: confidence intervals
for aij .

1: Compute the FastICA FRB replicate of demixing matrix
ŴR∗ = (ŵR∗

1 · · · ŵR∗
d )> based on bootstrap sample X∗ as

explained in I-IV.
2: If ŴR∗ is close to singular, repeat Step 1.
3: Compute the bootstrap mixing matrix ÂR∗ = (ŴR∗)−1.
4: Repeat Steps 1–3 until B bootstrap estimates ÂR∗

1 , . . . , ÂR∗
B

are formed.
5: Construct 100(1− α)% bootstrap confidence interval (CI). Re-

jectH0 if the CI does not contain 0.

where∇ŵk
Q(ŵk;X)

=
1

λ̂2k
Π̂⊥k−1Ĉ

−1
((
λ̂kI− m̂kŵ

>
k

)
M̂k − m̂km̂

>
k

)
and M̂k = EFn [g′

(
ŵ>k x

)
xx>]. Note that FRB approach

avoids the computation of the FastICA demixing matrix Ŵ∗

for each bootstrap sample X∗; instead one needs to proceed
as follows:

I. Compute the FRB estimate ŵR∗
k from equation (6).

II. Orthogonalize ŵR∗
k w.r.t. the previously estimated

demixing vectors:

ŵR∗
k ← Π̂∗⊥k−1ŵ

R∗
k .

III. Normalize the result:

ŵR∗
k ← ŵR∗

k /

√
(ŵR∗

k )>Ĉ
∗
ŵR∗

k .

IV. Perform the above steps for all demixing vectors and
construct the FastICA FRB replicate of demixing matrix
as ŴR∗ = (ŵR∗

1 · · · ŵR∗
d )>.

The procedure for constructing the FRB test of level α for
the elements of Â is explained in the Algorithm 1. In step 5
of the algorithm, 100(1−α)% bootstrap confidence intervals
(CI) can be obtained by percentile method as follows: first the
bootstrap values of âij are sorted in an increasing order and
then L = bαB/2cth and U = (B − L)th largest values are
taken as the lower and upper limits of the interval respectively,
where B denotes the number of bootstrap samples [9].

5. EXAMPLE

We generate n = 1000 samples from the ICA model (x =
As), where the source distributions are as follows: s1 has a
Laplace distribution, s2 has a t-distribution with 5 degrees of
freedom, s3 follows a logistic distribution and source s4 has
a Gaussian distribution. All distributions have zero mean and
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(a) Conventional bootstrap
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(b) Fast and robust bootstrap
Fig. 1. Obtained bootstrap distributions and the 95% confi-
dence intervals. The null hypothesis is only accepted for a41
and a22 (the elements in light gray) in both methods.

unit variance. The elements of the mixing matrix A4×4 are
randomly drawn from Unif(0.3, 1), except that a41 = [A]41
and a22 = [A]22 are set to zero to avoid any contribution of
the 1st (Laplacian) and the 2nd (t5-distributed) source signals
onto the 4th and 2nd mixture variables (x4 and x2) respec-
tively.

We then run the conventional bootstrap and FRB hypothe-
sis tests of level α = 0.05 for elements of A. Both tests were
constructed using B = 10000 bootstrap samples and tanh
as the nonlinearity for the FastICA estimator. The results are
in conformity with the considered A, i.e., the null hypothe-
sis is only accepted for a41 and a22 in both methods. Figure
1 shows the respective bootstrap distributions where a41 and
a22 are depicted in light gray. Below, the obtained confidence
intervals for these two mixing coefficients are given based on
the conventional bootstrap (CB) and the FRB method:

a41 a22
CB -0.0424, 0.0670 -0.0898, 0.0818

FRB -0.0406, 0.0668 -0.0883, 0.0839

Next let us investigate the power of the test. For this pur-
pose, we generated samples from the ICA model where the
mixing matrix was randomly generated except that (2, 2) ele-
ment a22 = ε with the initial value set to ε = 0, conforming
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0.4
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1

 

 

gauss

tanh

pow3

Fig. 2. The observed probability of detection of FRB tests
using gauss (solid line) tanh (dashed line) and pow3 (dotted
line) nonlinearities. Note that while all the three nonlinearity
have maintained close to the set PFA (1%), the gauss and
tanh have provided steeper power curves than pow3.

with the null hypothesis H0 : a22 = 0. Then ε was increased
in magnitude and the observed probability of detection (PD),
i.e., proportion of correct rejections, as a function of ε were
calculated. The obtained power curve of the FRB tests using
gauss (solid line) tanh (dashed line) and pow3 (dotted line)
nonlinearities are shown in Figure 2. The level (i.e., probabil-
ity of false alarm) was α = 0.01 and the number of generated
samples (for each fixed ε) was 300. As can be seen gauss
and tanh can be recommended in this setting since they have
provided steeper power curves and better maintained the set
PFA level (when the null is true). More specifically while
the obtained PFA for pow3 is 0.027, nonlinearities gauss and
tanh have provided PFA equal to 0.011 and 0.018 respec-
tively. These results are in conformity with the fact that gauss
is well suited for super-Gaussian sources (the case of this set-
ting), tanh is a good general-purpose nonlinearity and pow3
is recommended for sub-Gaussian sources [4].

To illustrate the impracticality of conventional bootstrap
in real-world HD data analysis problems, we calculated the
bootstrap CI’s of mixing matrix for the 122-channel MEG
data given in [1, Ch. 22]. We used an identical computing
system for both methods. While the conventional bootstrap
failed in providing the bootstrap CI’s in a reasonable time
(taking several days to compute), the FRB method provided
the bootstrap CI’s in just over one hour.

6. CONCLUSIONS

The proposed FRB test has a great potential of being used in
a wide range of applications where ICA model is commonly
applied. Classical bootstrap method is virtually impossible to
apply, while the fast and robust bootstrap provides significant
benefits in reducing the computational costs, offering stabil-
ity and robustness. Hence, it facilitates processing of large
volume and high-dimensional data sets using bootstrapping.
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