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ABSTRACT 

 
The paper proposes a robust dual-microphone algorithm for Voice 

Activity Detection (VAD) suitable for detecting speech arriving 

from random directions. The algorithm is based on the use of 

higher order statistics (HOS) in the complex subband domain in 

order to effectively detect voicing segments and distinguish them 

from nonharmonic noise. Metrics based on new established 

properties of the 2nd and 4th-order cumulants of complex 

exponentials are derived. The pros and cons of each of these are 

analyzed and validated through simulation in various SNR 

conditions. The results show the proposed scheme is effective in 

discriminating voiced speech segments, and is robust to Gaussian-

like and real-life recorded noises, even in low SNR. 
 

Index Terms— VAD, HOS, cumulants, multi-mics 

 
1. INTRODUCTION 

 
Voice Activity Detection (VAD) refers to the process of 

classifying an audio recording into speech and non-speech 

segments. This ability to distinguish active speech from noise is an 

important feature in a number of audio applications, such as speech 

recognition, speech enhancement, speech coding, and echo 

cancellation. Over the past several years, a number of VAD 

approaches have been presented in the literature, some of which 

are based on statistical models [1], cepstrum coefficients [2], 

entropy [3], or various other time frequency metrics. 

The ongoing challenge for VAD algorithms is to make them 

resilliant to noisy and interfering environments which are prevalent 

in typical audio applications. To improve the detection accuracy in 

low SNR, various schemes such as pattern recognition [4], 

adaptive energy thresholds [5], third order statistics [6], and 

periodicity estimators [7] were proposed. 
In general, single-channel VADs are practical for close-talking 

applications. However, in distant-talking contexts, they can 

become unreliable due to environmental noises, speech attenuation, 

and reverberation. In today’s applications, such as interactive TVs 

and hands-free mobile phones, multichannel VADs are needed 

because they exploit the spatial information provided by multiple 

sensors. The VADs based on spatial correlation  or homogeneity of 

the DOA [8][9] are good at detecting directional sound sources 

from various locations, though they cannot discriminate between 

speech and various noise sources from different DOA. 

In [10], we proposed a robust single-channel VAD algorithm based 

on established properties of the 3rd and 4th- order statistics, when 

considering the flat spectrum of the LPC residual. In this paper, we 

extend these ideas to a multichannel case, and the complex 

subband context. We establish new properties for the HOS of 

complex exponentials and use these to discriminate voicing energy 

in the subband structure. Metrics are developed at the subband and 

full-band levels to yield a robust way to distinguish –mostly 

voiced- speech from non-harmonic noise segments. 

The paper is structured as follows: Section 2 derives analytical 

expressions for the 4th-order cumulants. Section 3 discusses the 

metrics for voicing detection. Section 4 illustrates the overall 

algorithm. Section 5 provides the simulation results and section 6 

the conclusion. 

 
2. HOS OF COMPLEX SINUSOIDS 

 
In the following, some key properties relating the 2nd and 4th-

order cumulants of complex sinusoidal signals –with complex 

amplitude and random phase- are discussed. 

 

2.1 The 4th-Order Cumulant as Function of the 2nd- Order 
Theorem:  The Kurtosis, or 4th -order cumulant at lag 0 of a 

complex harmonic signal, is nonzero and can be expressed as a 

function of the 2nd order statistics of the signal. 
Proof: 

From the general expression of the 4th-order cumulant: 
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and obtain the expression of the 4th-order cumulant (at lag zero): 
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For the case of a complex harmonic signal with random phase of 

the form:    

      
          

It is straightforward to show that [|     |
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Thus, the 4th-order cumulant becomes -using (4):  
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yielding the relation between the 2nd and the 4th-orders as: 
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Therefore, the 4th-order cumulant at lag 0 (or kurtosis) of a 

harmonic signal can be written as a function of the squared energy 

(or 2nd order cumulant) of the signal.  The above derivation can be 

extended to the case of two or more harmonics and yield similar 

results. 

2.2 Cross-Cumulant of Delayed Exponential Signals 

Theorem: The cross-cumulant between two complex harmonic 

signals separated by a time delay    (Figure 1) reaches a maximum 

negative value when the correlation lag  .matches the time delay.  

 

Figure 1 :  Signal model for 2-mic input. 

Proof:  

The signal from the two microphones can be written –in the 

transform domain- as a scaled and delayed version of the source: 

                     

             
                

The cross-cumulant between the two signals at a lag L is: 
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Thus, given the following identities, for the case of the complex 

exponential signals: 
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Substituting into (7), the first term in the cross-cumulant is: 
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The second term is: 
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The third term is: 

 [       
      ]                          (10) 

 

Combining the terms into (7) yields the expression:  

      
                                 (11) 

 

Thus, the cross cumulant reaches a maximum (negative) value 

when the lag matches the time delay:      . 
Corollary 1: The magnitude of the normalized cross-cumulant 

between two delayed complex harmonic signals is one.  

Proof: 

To eliminate the effect of signal energy, a normalized cross-

cumulant can be deduced by normalizing it with the individual 

channels’ cumulants as: 
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Using equations (11) and (5), the magnitude of the ratio (12) 

becomes: 
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Corollary 2:  

The general relation between the cross-correlation and cross-

cumulant of two complex signals for any lag L is given by: 
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          (13) 

Proof: 

The relation is straightforward from equations (10) and (11). 

3. VOICE DETECTION BASED ON HOS 

The speech from each microphone is sampled at 16 kHz, and the 

signal is divided into complex subbands using a polyphase filter 

bank. A total of 48 bands are used, thus each subband may contain 

0, 1, or 2 harmonics, depending on pitch. 

3.1 Subband-Based Voicing Metrics 

We introduce two ratios for voicing detection: the first involves 

4th-order cumulants only. The second involves a combination of 2nd 

and 4th-order cumulants. The following are the conditions for 

voicing in each subband: 

 

a. Relation between the 2nd and 4th-order cumulants: The 

kurtosis of each channel is negative and its absolute value is 

greater than the energy (2nd moment) of that channel: 

   

      

                

      

                       (14) 

 

b. Relation between the individual 4th-order cumulants and the 

cross-cumulant of the two channels. The following ratio is 

near unity (for any lag L or frequency band k): 
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Theoretically, this metric is not susceptible to noise since both 

the numerator and denominator involve only higher 

cumulants. However, since the two are zero for Gaussian type 

noise, the ratio may take unpredictable values during non-

speech. Practically, the variance of the estimators for the 

numerator and denominator prevents the zero division, though 

the value will fluctuate with noise level. 

c. Relation between the 4th-order cross-cumulant and the 2nd 

order cross-correlation between the two channels. The 

following ratio is near unity (for any lag L or frequency band 

k): 
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Theoretically, this metric is affected by the noise due to the 

2nd order term in the denominator, thus we would expect the ratio 

to deviate from 1 in low SNR and weak speech segments. 

Practically, the variance of the estimator of the 4th-order cumulant 

(in the numerator) is also a function of the noise energy [11], 
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therefore during noise, the ratio value will depend on the noise 

level. To mitigate this effect, both ratios (15, 16) are computed 

whenever the condition given by (14) is met. A plot of the two 

ratios is given in Figure 2 for an SNR of 5 dB  for a given 

frequency subband. 

 

We deduce that the two ratios are robust to the presence of 

noise. While both ratios exhibit the overall unity value to some 

degree, the ratio of the normalized cross-cumulants (Eq 15) is more 

accurate and has fewer fluctuations than that of the 2nd and 4th-

order cumulants (Eq 16) in all SNR conditions.  

 

Figure 2 : VAD metrics, subband #3, SNR = 5 dB. 

3.2 Frame-Based Voicing Metrics 

In order to yield a frame-based (i.e., a full band) voicing detector, 

similar metrics to (15) and (16) are derived by summing the 

numerators and denominators in the two ratios across the 

frequency subbands:  

 

a. Full-band normalized cross-cumulant: 

|           
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      (17) 

b. Fullband cross-cumulant normalized by cross-correlation: 
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The above metrics are expected to be near unity when computed as 

shown since the subbands that contain harmonics will contribute to 

both the numerator and denominator, and those that have no 

harmonic energy will not add anything to either. 

c. A final metric is considered and consists of summing the ratio 

of equation (15) across all subbands: 

  ∑|           
    |

  

 ∑
|      

    |

√    
        

    
||

  

 

              

 

A plot of all three frame-based metrics for the case of 5 dB SNR is 

shown in Figure 3 below. 

 

Figure 3 : Frame-based VAD metrics; SNR = 5 dB. 

 

As in the case of subband-based metrics, we find the 

normalized cross-cumulant (Eq 17) to be accurate and very robust 

to noise. It does, however, miss the onset of speech syllables and 

trailing edges. The first is due to the averaging history delay while 

the second is due to the trailing edge of certain phonemes being 

non-harmonic. The same holds for unvoiced segments, which go 

mostly undetected. 

4. EXPERIMENTAL RESULTS  

4.1 HOS-based VAD Algorithm 

The overview of the algorithm is given in Figure 4 below. The 

signals from both channels are divided into complex subbands 

using polyphase filter banks. The 2nd and 4th-order statistics are 

computed for each channel and for the cross-channels. The ratios 

(Eq 15, 16, 17, 18, and 19) are computed for the bands and 

averaged over the frame. Thresholds are used and the decision is 

made to declare the bands and/or the frame as containing voicing 

energy or not. 

 
Figure 4 : VAD algorithm overview. 

 
 

A frame likelihood measure is computed, based on the normalized 

fullband cross-cumulant (Eq 17):  

                      
  |  |      

        
    |

  
|
         (20) 
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Where α and β are tuning parameters. An HOS-based VAD state 

machine is constructed as follow: 

 

4.2 Comparative Analysis with multi-mic VAD Algorithms 

4.2.1 A Dual-Mircophone Gaussian-based VAD 

The statistical detector developed by Sohn [12][13] is based on 

modeling the spectral components of speech and noise as  complex 

Gaussian distributions, from which a likelihood ratio is deduced. 

The approach hinges on a proper estimate of the a posteriori and a 

priori SNR defined defined by Ephraim et al.[14]. To extend the 

algorithm to a multi-microphone, the noise suppression approach 

and its corresponding multi-channel SNR’s proposed in [15] is 

used. 

 
4.2.2 A DOA-based VAD 

The algorithm proposed in [9] uses the homogeneity of the DOA 

values estimated from the phases across the frequency bins of the 

FFT transforms of both microphone signals. From the estimates, a 

measure of the entropy is computed, from which the VAD decision 

are deduced.  

4.2 Results on collected noisy speech data 

Clean speech is recorded in an un-echoic chamber using two 

microphones spaced apart by 10 cm, with male and female 

speakers, and phonetically balanced sentences. Noise is either 

generated synthetically (Gaussian) or recorded separately from a 

street corner or in a cafeteria using the same microphone pairs. 

Noisy speech with various SNR’s is generated. The detection 

results of the full-band VAD metric are compared with the hand-

labeled speech/non-speech as well as the voiced speech traces. The 

probability of correctly detecting speech, voiced speech, as well as 

that of false classification are listed in Tables 1 to 3  below.  

 

Table 1 : HOS-based VAD simulation results. 

 SNR Pc 

Speech 

Pc Voiced 

segment 

Prob. False  

classification 

Gaussian 10 dB 0.753 0.8719 0.114 

 5 dB 0.6394 0.7985 0.12 

Bable 15 dB 0.762 0.8836 0.1294 

 5 dB 0.5802 0.7649 0.2216 

 0 dB 0.6364 0.8148 0.2894 

Wind 

noise 

10 dB 0.7848 0.8875 0.14 

     

 

 

 

 

Table 2 : Statistical VAD simulation results. 

 SNR Pc 

Speech 

Pc Voiced 

segment 

Prob. False  

classification 

Gaussian 10 dB 0.776 0.9458 0.0692 

 5 dB 0.5045 0.6152 0.262 

Bable 15 dB 0.997 0.9999 0.368 

 5 dB 0.9119 0.9798 0.3735 

 0 dB 0.6608 0.7188 0.3277 

Wind 

noise 

10 dB 0.9807 0.9998 0.454 

     

 

 

Table 3 : DOA-based VAD simulation results. 

 SNR Pc 

Speech 

Pc Voiced 

segment 

Prob. False  

classification 

Gaussian 10 dB 0.7204 0.89 0.1554 

 5 dB 0.6715 0.8082 0.129 

Bable 15 dB 0.973 0.9915 0.3175 

 5 dB 0.8759 0.9692 0.3891 

 0 dB 0.7404 0.8341 0.35 

Wind 

noise 

10 dB 0.6039 0.6699 0.381 

     

 

 

Both the statistical and DOA-based VADs quickly skew 

towards speech frames in moderate level babble noise, resulting in 

high false detection. The HOS-based VAD has a more graceful 

degradation in the various noise types. The DOA-based VAD has a 

poor performance in wind noise, even though it performs very well 

in Gaussian noise. The performance of the statistical VAD 

degrades for low SNR in Gaussian noise, and in general, it proves 

to be very sensitive to threshold settings.   

 

 

5. CONCLUSION 

 
We proposed a two-microphone VAD algorithm based on the 2nd 

and 4th-order cumulants of the complex subband domain signals. 

The derived metrics are based on newly established properties that 

higher order statistics of complex exponentials would exhibit and 

the fact that they are different from those of Gaussian noise. 

Simulation results from synthetic and recorded noise confirm the 

effectiveness of the metrics used. Comparison to recently 

developed multi-channel VAD algorithms show the proposed 

method is effective in a variety of real-like recorded noises. 

The algorithm is particularly robust in detecting voiced 

segments in various noises, even in very low SNR. Because of this 

feature, it is deemed valuable in applications where detection of 

most, though not all, of the voiced segments is needed, such as in 

direction of arrival or in long-term pitch estimation. Finally, the 

proposed scheme can be extended to any number of microphone 

pairs. 
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