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ABSTRACT

In previous works, we have developed a spectrogram image fea-
ture extraction framework for robust sound event recognition. The
basic idea here is to extract useful information from the 2D time-
frequency representation of the sound signal to build up specifi fea-
ture extractions and classifier under noisy conditions. In this pa-
per, we propose a novel robust spectrogram image method where
the key is the observed sparsity of the sound spectrogram image in
wavelet representations, which is modeled by the Generalized Gaus-
sian Distributions modeling. Furthermore, the Generalized Gaussian
Distribution Kullback-Leibler (GGD-KL) kernel SVM is developed
to embed the given probabilistic distance into the quadratic program-
ming machine to optimize the classification The experimental result
shows the superiority of the proposed method to the previous works
and the state-of-the-art in the field
Index Terms: Sound Event Recognition, Generalized Gaussian Dis-
tribution, Kullback-Leiber Distance, Kernel, Spectrogram, Wavelet

1. INTRODUCTION

Sound Event Recognition (SER) is the task to automatically de-
tect and classify real life events using relevant information extracted
from the acoustic signal. This has a wide range of applications such
as acoustic surveillance [1], audio-content retrieval [2], rich tran-
scription ASR [3], and environment understanding [4]. Unlike ASR,
where the noise and environment effects can be limited using the
close-talk microphones, SER always has to deal with noises, rever-
beration and attenuations caused by distant-microphone effects.

The motivation behind our image-based approaches comes from
the auditory image concept, i.e. the visual perception of sounds
through spectrogram images. It is well known that humans can eas-
ily locate the characteristic elements in a spectrogram – an approach
called “spectrogram reading” [5] – and discriminate between sounds
based solely on the visual information. For example, Fig. 1 shows
the spectrogram for a bottle sound in both clean and noisy condi-
tions. Here, the most characteristic, high-power elements can be
easily located, even in 0dB speech babble noise as in Fig. 1b. For
this and many other sound events, we have observed that the fre-
quency spectrum is typically sparse, with the power concentrated in
particular frequency bands. Therefore it is still possible to visually
see the sound event among the diffuse background noise.

Our previous work on the spectrogram image feature (SIF) [6]
developed a global descriptor of the pseudo-colored sound spectro-
gram image through the pixel distribution information. This was
combined with an SVM classifie , and shows relatively good results
of SER under noisy and mismatched conditions. Greater improve-
ments were obtained when adopting a missing feature framework
[7]-[8]. However, these missing feature systems requires relatively

Fig. 1. Spectrogram images of bottle sound in a) clean; b) 0dB bab-
ble noise

high computational cost which which may introduce difficultie in
their practical implementation.

In this paper, we develop a novel spectrogram image method
for robust SER method which is effective in the evaluation and suit-
able for the practical implementation. The key idea of the method
is the sparsity of the sound spectrogram image in wavelet domain
which is nicely characterized by the Generalized Gaussian Distri-
bution modeling. Furthermore, a novel Generalized Gaussian Dis-
tribution Kullback-Leibler (GGD-KL) kernel classificatio method
is developed by embedding into the classifie the GGD-KL distance
of the sound spectrogram images in their wavelet representations.
Unlike our previous works [9]-[10], where the generalized Gamma
distribution is used for modeling the non-negative subband power
spectrum, here we employ the generalized Gaussian model which
better models the wavelet coefficient [11]. An important point of
our method is that the wavelet distribution is modeled for the sub-
set of the dominating components which are extremely robust under
noisy conditions. The experimental result shows the superiority of
the proposed method to both the state-of-the-art and our previous
methods.

We note that, the sparsity of audio spectrogram has also been
studied in literature as another different framework of sparse cod-
ing [12], where a comprehensive data is used to learn the dictionary
and matching pursuit is applied in the classification While achiev-
ing good performances, the sparse coding method requires extremely
high computational cost and therefore is still difficul to implement
in real life applications.

2. SPECTROGRAM IMAGEWAVELET
REPRESENTATION

This section introduces the Spectrogram Image Wavelet Represen-
tation (SIWR). The motivation of using wavelet to represent the
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spectrogram images comes from the observation of that the sound
event spectrogram images are geometrically localized. Hence, the
wavelets, which are transient, are suitable to characterize the sound
event spectrograms, which are highly non-stationary. The sparsity
of the wavelets is also important to deliver a robust representation in
noisy conditions.

2.1. Spectrogram Image Conversion

The spectrogram image conversion follows standard signal process-
ing algorithms. First, the audio signal is segmented into short time
half overlapping windows of 20ms, before the windowed Discrete
Fourier Transform is taken to transform the waveform into its spec-
trum, which is given by:

X(t, k) =
N−1
∑

n=0

x(n)ω(n)e−
2πi

N
kn

k = 0, . . . , N − 1 (1)

where N is the length of each segment, ω(n) is the Hamming win-
dow function and k corresponds to the frequency f(k) = kfs

N
, where

fs is the sampling frequency in Hertz.
Then the log-power spectrum is given by compressing (loga-

rithm) the power spectrum to get the spectrogram as

S (t, f) = 20 log10 |X (t, f)| . (2)

The spectrogram matrix is then transformed into a grey-scale
intensity image, with the range scaled between [0, 1]:

I(t, k) =
S(t, k)−min(S(t, k))

max(S(t, k))−min(S(t, k))
. (3)
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Fig. 3. Multi level wavelet transform

Fig. 4. Multi level 2D wavelet transform

2.2. Spectrogram Image Wavelet Representation

After the sound spectrogram is converted into an grey-scale image,
the wavelet transform is carried out to transform it into 2D wavelet
representations. The 2D wavelet is based on 2D separable filters
therefore the transform is naturally 1D and the 2D output is obtained
by applying the 1D filter step-by-step in the vertical and horizontal
directions. The basic idea of a 1D wavelet is illustrated in Fig. 3. In
each level, the transform consists of a low-pass and a high-pass filte ,
which much be quadrature mirrors [12]. The multi-level transform
is carried out using the same set of filter to get a wavelet tree rep-
resentation, like in Fig. 3. The filte is characterized by the wavelet
and scaling functions [12].

In this paper, we employ the bi-orthogonal Cohen-Daubechies-
Feauvean wavelets (CDF 9/7) [13], which has been adopted in JPEG
2000 and FBI standards of image and fingerprin compressions, re-
spectively [13]-[14]. The lifting scheme [13] is chosen in the filter
implementation due to its low complexity. We note that the choice
of wavelet type is not crucial and mostly based on the low cost of
the implementation. The 3-level 2D wavelet transform is illustrated
in Fig. 4. Each spectrogram image is transformed into 16 subbands
of wavelet coefficients

I
DWT2
−→ {ck (1 : nk)} , (4)

where k = 1 : (L+ 1)2, nk = nI

2k
. L denotes the decomposition

level.
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2.3. Generalized Gaussian Distribution model of the SIWR

In contrast to the previous work [9]-[10], where the stochastic mod-
eling has been applied in each subband of the power spectrum, in this
paper, we model the 2D spectrogram image with the GGD model
which nicely captures the sparsity of its wavelet components.

To reduce possible scaling effects, we subtract the mean of
wavelet coefficient in each subband. Their distribution is now
denoted by a symmetric generalized Gaussian pdf function as:

p (x) =
β

2αΓ
(

1
β

) exp

[

−
(

x

α

)β
]

(5)

where the generalized Gaussian distribution is characterized by two
parameters α and β, which can be estimated using iterative methods
[11]-[15].

In this paper, we derive an empirical solution for the parameter
estimation based on the moment matching method, denoted by:

M (β) =
E (|X|)2

E (X2)
=

Γ
(

2
β

)2

Γ
(

1
β

)

Γ
(

3
β

) , (6)

E
(

X
2) =

α2Γ
(

3
β

)

Γ
(

1
β

) , (7)

and utilising the following approximation of the Gamma function as
[16]:

log Γ (z) ≈ (z − 1)−
1

2
(z − 1)2 +

1

3
(z − 1)3 . (8)

2.4. Subset selection for modeling

To reduce the effect of noises, we choose to represent only the domi-
nating subset of wavelet coefficient in each subband. This approach
is similar to the wavelet denoising methods based on thresholding the
wavelet coefficient in subbands. In this paper, we simply choose to
model only the coefficient which are larger than the median value.

3. GENERALIZED GAUSSIAN DISTRIBUTION
KULLBACK-LEIBER KERNEL SVM

In this section, we construct the GGD-KL kernel SVM classification
to benefi from the distribution modeling of the spectrogram image
wavelet representations.

3.1. SVM

Starting with linear SVM, which considers the problem of designing
a separating hyperplane for m vectors xi ∈ R

n i = 1, 2, ...., m.
Each point xi ∈ R

n belongs to one of two classes, by its label
yi ∈ {1,−1} , i = 1, 2, ..., m. The goal of linear support vec-
tor machines is to fin an optimal separating hyperplane f (x) =
w

T
x + b, which maximizes the margin, i.e. 2

‖w2‖
,or equivalently

minimizes
∥

∥w
2
∥

∥

min
(w,b,ξ)

(

1
2
w

T
w + C

n
∑

i=1

ξi

)

s.t. yi
(

w
T
xi + b

)

≥ 1− ξi ; i = 1, 2, ..., n
ξi ≥ 0,

(9)

where the term
n
∑

i=1

ξi denotes the upper bound of the misclassifica

tion from the training samples and C is a coefficien that regulates
between the misclassificatio and the robustness of the classificatio
(width of margin). There are several ways to solve the optimization
problem (9) which returns the solution in a unique form noted as

w
T =

m
∑

i=1

αix
T
i ; (10)

b =
m
∑

i=1

αiyi, (11)

where α : αi

C
= ξ

i
is called support vector.

The separating hyperplane can be denoted now in terms of the
inner product of vectors xi

f (x) =

m
∑

i=1

αix
T
i x+ b (12)

The linear SVM can be generalized into non-linear by replacing the
inner product in (12) by a kernel function

x
T

i x → K (x,xi) . (13)

The non-linear separating hyperplane can be denoted by

f (x) =

m
∑

i=1

αiK (x,xi) + b. (14)

3.2. Probabilistic distance SVM

The deterministic non-linear kernel does not have physical mean-
ing and in a many cases does not perform well in the classificatio
tasks. Furthermore, the traditional SVM requires the input feature
vectors to have the same length to conduct the kernel calculation,
which create problems for preparing the samples in practice. In [9],
we propose to use parametric probabilistic distance as a embedded
kernel for the SVM classification i.e.

K (x,xi) = 〈d (x,xi)〉 , (15)

where d (x,xi) is a parametric probabilistic distance between the
distributions of samples x and xi.

3.3. Generalized Gaussian Kullback-Leiber Kernel SVM

In this paper, given the modeled generalized Gaussian distribution of
subband wavelet coefficients the kernel in (15) can be conducted by
a closed form solution using the symmetric Kullback-Leiber distance
[11], denoted as:

d (a, b|ai, bi) =

(

bi

b

)ai Γ
(

ai+1
a

)

Γ
(

1
a

) +

(

b

bi

)a Γ
(

a+1
ai

)

Γ
(

1
ai

) −
1

a
−

1

ai

,

(16)
where a, b ; ai, bi are estimated-from-sample generalized Gaussian
distribution parameters in a subband. In the training, given the kernel
matrix, a proximal probabilistic distance SVM parameters can be
estimated in a closed form solution [9]. In the test, for each binary
pair, the decision of label y is made by evaluating (11), written as:
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y = sign

(

m
∑

i=1

αiK (x,xi) + b

)

. (17)

Multi class SVM is firs performed in each subband and then
summarized over subbands. In each step, the conventional maximum
voting principle is applied. This scheme is found to perform better
than the sum-over-subband kernel implemented in [9].

4. EXPERIMENTS

4.1. Database

The task is to classify unknown sound samples into one of the ten
sound classes: normal speech, cry, scream, laugh, knock, breaking,
door slamming, phone ring, explosion and clapping. The database
consists of about 2 hours of audio taken from [18]. The audio sam-
ples are of approximately one-two seconds in length.

To validate the robustness of the proposed techniques, we played
back and recorded the whole audio data in three environments: in an
offic with SNR ranging from 20dB to 25dB; in a hall with SNR
ranging from 10dB to 15 dB, and at a shopping mall with SNR rang-
ing of 0-5 dB. In the last two cases, the reverberation also contributes
to the noise in SNR calculations. We note that, the segmental SNR
(Signal to Noise Ratio) is estimated by algorithm developed in an
our previous paper [20].

To compare the performances, we evaluate the classificatio ac-
curacy in 10 runs cross-validations. In each run, around one hour
of testing data are randomly selected. More precisely, 2794 training
and 2782 testing sample names are selected for each run.

Excepting the multi-condition HMM method, when the training
samples are taken from all four conditions (i.e. clean, office hall,
mall), the rest of methods are based on clean training, i.e. 2782
name-selected testing samples are from clean data while for each
noisy data, 2794 name-selected training samples are taken

4.2. Evaluation methods

To validate our proposal, we firs compare the proposed method to
the state-of-the-art methods which are the MFCC-HMM with clean
training and the MC-MFCC-HMM with multi-condition training
(mentioned above).

1. MFCC-HMM [19]: 39-dimensional frame MFCC feature
with 3-stage HMM with 8-component diagonal GMM mod-
els [18].

2. MC-MFCC-HMM: the multi-condition training with the con-
ventional MFCC-HMM framework.

3. SC-MP: the sparse coding with matching pursuit classifie
method [12]

Next, we compare the proposed to our previous methods, as follows,

1. SIF-SVM: global spectrogram image descriptor with SVM
classifie [6].

2. MF-MFCC-SVM: our visual inspired (blob detection) miss-
ing feature method [8].

3. HE-STE-SPDSVM: our previous Hellinger-exponential ker-
nel SVM with subband temporal envelop representations
[10].

Table 1. Comparison to state-of-art methods

Conditions MFCC-
HMM

MC-MFCC-
HMM SC-MP

Offic 90.1± 2.5 91.2 ± 2.1 94.0 ± 1.4

Hall 58.1± 2.9 81.4 ± 2.7 63.1 ± 3.7

Mall 38.1± 4.4 72.1 ± 2.2 56.1 ± 2.1

Table 2. Comparison to our previous methods

Conditions MF-MFCC-
GMM

SIF-
SVM

HE-STE-
SPDSVM

Proposed

Offic 90.1 ± 2.9 92.4 ± 1.9 96.4 ± 2.3 97.0 ± 2.4

Hall 82.6 ± 3.9 79.7 ± 3.5 82.5 ± 3.2 83.1 ± 2.7

Mall 73.2 ± 3.7 70.8 ± 3.5 72.4 ± 3.4 74.1 ± 3.8

4.3. Results and discussions

Table 1 compares the proposed methods to the state-of-art MFCC-
HMM in clean training and multi-condition training, respectively.
The results of MFCC-GMM and MFCC-SVM are slightly worse
and therefore were not included in the comparison. We can clearly
see that the proposed method significantl outperformed the state-
of-art MFCC-HMM, which has the same clean training conditions.
The proposed method even outperformed the multi-condition train-
ing, which requires much more training resources. Statistical sig-
nificanc (p < 0.1) of proposed to the multi-condition method was
obtained in two conditions (20-25dB and 10-15dB). The SC-MP has
shown not effective compared to the MC-MFCC-HMM.

Next, we compare the proposed method to our previous meth-
ods. The proposed method shows a statistically significan improve-
ment to each of the previous SIF (global descriptor of the spectro-
gram image), MF-MFCC-HMM (blob detection missing feature),
and HE-STE-SPDSVM (Hellinger-exponential kernel with auditory-
inspired subband temporal envelope representations) methods in the
offic environment. In the lower SNR conditions, the proposed
method outperformed SIF and has a comparable performance to the
other methods. We also note that all the visual inspired methods
have shown significan superiority to the state-of-art MFCC-HMM
in clean training, and are comparable to the MC-MFCC-HMM with
multi-condition training. Therefore, this demonstrates the benefi of
using 2D information for sound event recognition.

Note that, although the proposed GGD-KL kernel is not factoris-
able to transform it into linear SVM as the Hellinger-exponential in
[8], the evaluation of (14) is reasonably fast thanks to the sparsity of
the support vectors.

5. CONCLUSIONS

We propose a novel representation of the sounds based on the Gener-
alized Gaussian distribution model of the spectrogram image wavelet
coefficients Based upon on the proposed representation, we fur-
ther develop the GGD-Kullback-Leiber kernel SVM classificatio
method. The method takes into account the advantages of spectro-
gram image, JPEG 2000 wavelet compression, wavelet denoising
framework, and the embedded probabilistic distance SVM, and has
shown the superiority in the noisy and mismatched conditions.
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