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ABSTRACT

In this paper we investigate methods for propagating automatically
generated or user-defined labels through an image using edge-
preserving filters. We focus on the domain transform filter as it has
been used for propagation purposes in the past. The method we
present addresses some of the numerical issues that arise with using
the filter directly and also improve on the results by better respecting
the underlying image structure during the label propagation. Finally
we also demonstrate how a filter-based approach is preferable to
using global optimization for interpolating automatically generated
sparse features.

Index Terms— Domain Transform, 2D to 3D Conversion, La-
bel Propagation, Sparse Feature Interpolation

1. INTRODUCTION

Label propagation is the process by which pixels in an image are as-
signed membership, either exclusionary or through some weighted
mixture, to a set of labels L. The propagation process is done in
such a way that the underlying image content is respected. For in-
stance, in the context of image segmentation [1, 2], this corresponds
to assigning a pixel to the “most similar” label in such a way that
the object boundaries are respected. This would be an example of an
exclusionary labelling: each pixel can only be related to one label.
Alternatively, colourization [3] is an example of a “soft” labelling
where the labels are mixed together during the propagation. The
process can be best described as applying anisotropic diffusion [4]
to the labels. This ensures that the labels will be mixed (diffused) in
homogeneous regions, regions where there are no textures or edges,
but will not go beyond object boundaries. Typically, but not always,
these correspond to strong image edges.

The 2D to 3D conversion process takes an existing image and
generates novel views that simulate as if the image was taken with
another camera. In the absence of any other information, a user-
guided approach can produce very good results [5, 6, 7, 8]. This
is essentially the same problem as colourization where a user pro-
vides sparse labels to add colours to a monochromatic image or to
modify the colours in a colour image. The difference is that rather
than diffusing user-provided colour values, depth values are diffused
instead.

Recently, fast edge-preserving filters have been developed that
can, in principle, be used to perform label propagation. Lang et al
used such a technique to propagate labels through video sequences
[9]. By processing the user labelling with the domain transform (DT)

*Corresponding author.

filter [10] both spatially and temporally, Lang et al were able to prop-
agate the labelling over long duration sequences (they referred to it
as “scribble propagation”). Specifically, they jointly estimate the
inter-frame optical flow, also with the DT filter, along with the la-
bel propagation. The filtering is done in an iterative manner: first
spatially (propagating the labels through the image) and then tem-
porally using the optical flow (determining where the labels will be
in the next frame). The number of iterations they have to perform is
relatively small; they report using four in their paper.

By processing video Lang et al essentially mitigate a common
problem in label propagation: edge localization. Their method uti-
lizes an occlusion penalty that, over several iterations, helps to iden-
tify where object edges actually are as even weak edges will occlude
the background if the object moves. This avoids propagating the
labels into regions where the object is not.

Unfortunately this information is simply not available for label
propagation in single images. For methods to generate depth maps
for images, directly applying an edge-preserving filter to the user-
provided strokes will produce results inferior to those from methods
based on global optimization. Furthermore, filter-based methods are
highly sensitive to the filter parameters and the appropriate parame-
ters are dependent on the image content. However there are certain
cases where an edge-preserving filter is preferable to a global opti-
mization approach such as [6, 8].

In this paper we present a method for interpolating potentially
noisy sparse features using edge-aware filters. We focus on the do-
main transform filter as we have found that it is well-suited to this
task and address some of the numerical issues inherent with using
such an interpolation technique. Because we are only changing how
the labelling is interpolated, the basic interface does not change.

Please note that we provide full-resolution versions of all of
our figures at http://www.ee.ryerson.ca/˜rrzeszut/
icassp2014.

1.1. Relation to Prior Work

In [11] we presented a method, similar to the Depth Director system
[12] by Ward et al, whereby we could automatically extract depth
maps from a sequence and allow for user-guided corrections. As
part of our method, we presented a simple interpolation scheme to
convert the sparse depth estimates into a depth map using the domain
transform filter. Because the labels were being processed directly,
we were able to also add user corrections in regions, for instance,
where the incorrect depth was estimated.

The basic interpolation method was similar to what was already
presented in [10] and [9] but in this paper we better expand on how
that method can be applied and how to improve its results. More
specifically we address how to improve the edge localization since
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this is especially important when generating depth maps. Please see
[6] and [8] for more information.

2. DOMAIN TRANSFORM FILTERING

We begin by providing a brief overview of the Domain Transform
(DT) filter. We ask the reader to refer to [10] for a more in-depth
discussion. The premise of the filter is that given some domain n,
there is a transform T [n] that maps n→ m such that similar features
in n are close together in m. The transform itself is defined as

T [n] =

n∑
i=0

{
1 +

σs

σr

D−1∑
c=0

∣∣∣Ic[i]− Ic[i− 1]
∣∣∣} , (1)

where Ic is the c-th colour channel of aD-colour image I(x, y). The
transform is defined purely in one dimension and so Ic[i] refers to
either a row or column of the image I(x, y). The transform is such
that the distance between samples in the transformed domain is pro-
portional to the L1-norm in the original domain. When constructing
a filter from the transform σs defines its spatial extent while σr de-
fines its extent with respect to the values of I(x, y).

Filtering with T [n] can be performed in a number of ways and
Gastal and Oliviera provide three methods, two1 of which will be
discussed in this paper. The normalized convolution filter (DTNC)
produces a filtered output y[n] from a discrete signal x[n] by

y[n] =
1

j − i

j∑
k=i

x[k], (2)

where i and j are chosen such that (T [j]−T [i]) = 2r and i < n < j
for some filter radius r. This is a standard FIR moving average filter
whose width is controlled by T [n]. The recursive form filter (DTRF)
is a first-order IIR filter defined as

y[n] = (1− ad)x[n] + ady[n− 1], (3)

where d = T [n] − T [n − 1] and 0 ≤ a < 1 is a feedback coeffi-
cient. Since a is defined to be less than 1, the filter is stable (the pole
remains inside of the unit circle). This filter is not symmetric and
so Gastal and Oliviera apply this in two passes: first in the forward
direction and then in the reverse direction. Please note that both fil-
ter variants are linear; the domain transform effectively produces a
different filter at each value of n.

Because the filter is only defined for one-dimensional signals,
filtering a two-dimensional image is done iteratively in multiple hor-
izontal/vertical passes. This implicitly assumes that the DT is a sep-
arable filter when in fact it is not. Therefore after each pass the filter
variance is halved so that filtering becomes progressively weaker to
avoid unbounded smoothing. Gastal and Oliviera define a parameter
σH(i) such that

σH(i) =
σs

σr

√
3

2N−i

√
4N − 1

, (4)

where 1 ≤ i ≤ N is the current filter iteration. The DTNC filter
radius is then defined as r = σH(i)

√
3 and the DTRF feedback

coefficient is defined as a = exp
(
−
√
2/σH(i)

)
. The result of this

is that as N → ∞ the DT filter, regardless of its variant, will have
the same response as a Gaussian filter if σr →∞.

1The third, interpolated convolution, has similar properties to normalized
convolution and will not be discussed.

(a) DTNC (b) DTRF

Fig. 1: A comparison between the DTNC and DTRF when applied
to an image. In both images the filter parameters were σs = 100,
σr = 1 and N = 3.

A comparison between the two DT filter types is shown in Figure
1. Generally the DTRF filter is more “blurry” than the DTNC filter
due to the IIR filter propagating information throughout the image.
This can be best seen on the left side of the image where the leaves
are more visible Figure 1b. The fact that the DTNC is essentially
a “local” filter has important implications when using it for label
propagation as it better respects image edges.

3. LABEL PROPAGATION THROUGH FILTERING

In this section we describe how the DT filter is used for label prop-
agation. We are interested in this for the purpose of creating depth
maps from sparse depth labels. This is a summary of what was orig-
inally proposed by Gastal and Oliviera in [10] and elaborated upon
by Lang et al in [9]. Both papers drew on the work of Fattal et al
[13] for image colourization. How this approach works is impor-
tant in understanding some of its shortcomings, which we address in
Section 4.

Consider the simple case of a one-dimensional “image” signal
g[n]. The content of the signal is inconsequential as each DT fil-
ter is essentially uniquely generated for a particular g[n]. This re-
mains the same throughout our analysis and so the same filter is
used throughout. Let the stroke signal be s[n] = Lδ[n] and the
confidence signal be c[n] = δ[n], where δ[n] is the Dirac delta func-
tion andL is the label value. Therefore, the filtered confidence signal
c′[n] = DT {c[n]|g[n]} is simply the impulse response of the DT
filter.

Similarly the label signal can be filtered so that s′[n] =
DT {s[n]|g[n]}. However the label signal is really a scaled ver-
sion of c[n] and therefore s′[n] = Lc′[n]. Dividing s′[n] by c′[n]
results in the final interpolated result of sint[n] = L. This is ex-
pected as there is a single impulse (label) and so it should be applied
to all values of n.

In the preceding example it was assumed that there was only a
single label. However it is simple to generalize to the case of mul-
tiple impulses (labels), i.e s[n] =

∑
i Liδ[n − Pi], where Pi is the

position of the i-th label. This in turn results in c[n] =
∑

i δ[n−Pi].
If we define c′i[n] = DT {δ[n− Pi]|g[n]} then the interpolated la-
bel signal can be found as

sint[n] =
1∑

i c
′
i[n]

∑
i

Lic
′
i[n]. (5)

Each label is therefore distributed through out the image by the filter
and then normalized by the relative contribution of the label itself.
This is why it was referred to as a “normalization image”.

It is possible to extend the use of c[n] so that it also indicates
the relative confidence of a particular label. Consider the case were
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the labelling is automatically generate by some process, such as
sparse feature matching. In this case, each label will also have an
associated “quality” or confidence value that indicates how reliable
that label is. Now the confidence signal is scaled such that s[n] =∑

i(LiCi)δ[n − Pi] and c[n] =
∑

i Ciδ[n − Pi], where Ci is the
relative confidence value between 0 and 1. This modifies (5) so that
it becomes

sint[n] =
1∑

i Cic′i[n]

∑
i

(LiCi)c
′
i[n]. (6)

This weights each label by the confidence value so that a poor qual-
ity label will have less impact than a good one. More can be done to
change what labels are, and are not, included in the final interpola-
tion and much of [9] is devoted to this.

Extending (6) to images is straightforward. We assume that the
user has provided a sparse labelling image

L(x, y) =

{
L(x, y) label exists at pixel (x, y)
Lun otherwise

, (7)

where L(x, y) is the label’s value at (x, y) and Lun is a special value
used to indicate that the pixel is unlabelled. From this we define the
confidence (i.e. normalization) map

C =

{
1 L(x, y) 6= Lun

0 otherwise
. (8)

The final, interpolated value is then be obtained by

Lint(x, y) =
DT
{
C(x, y)L(x, y)|I(x, y)

}
DT
{
C(x, y)|I(x, y)

} , (9)

where DT(·) is the domain transform filter operator. Please note that
the multiplication and division are performed per-pixel. Because we
desire to use the image to guide the label propagation, the domain
transform in (1) is obtained from the original image I(x, y). This in
turn blurs the labelling based on the content of the original image.
A problem with this approach is that it is possible for there to be
regions of the image where the labels were not propagated, i.e. the
numerator and denominator of (9) are both zero. This effects the
interpolation and we address this in the proceeding section.

4. SPARSE FEATURE INTERPOLATION

The problem of interpolating sparse features is, in principle, the
same as interpolating user-provided labels. The difference, however,
is that the labelling is now generated by some automated process
rather than a user. This changes the requirements for the interpola-
tion in that the labelling can no now longer be assumed to be com-
pletely correct.

4.1. Optimization versus Filtering

If the labelling is not correct then using an optimization-based ap-
proach can result in artifacts when producing the final output. Fig-
ure 2 shows the extracted depths for a frame of a video sequence
that was processed using [11]. The size of the features has been ex-
aggerated for visualization purposes (they are the size of individual
pixels). The depth of any particular feature is independent of that of
any other feature and so two neighbouring features may have com-
pletely different depth values.

Fig. 2: Sparse depth labels obtained through automatic processing.
Brighter colours indicate features closer to the camera.

(a) Global Optimization (b) DTRF

Fig. 3: A comparison between using global optimization and the
DTRF filter to generate the complete depth maps. The filter param-
eters used were σs = 500, σr = 2 and N = 4.

Any small errors in the estimates will not be immediately visible
from just examining Figure 2. However, they become evident when
generating a dense depth map. Figure 3 a comparison between the
depth map generated when using the method in [6] and using (9)
with a DTRF filter. Only the region around the head is shown for
clarity.

In Figure 3a there are small, slightly darker regions in the
map while in 3b these are greatly reduced. This is a result of the
optimization-based result respecting the input labelling. The so-
lution it generates will be completely consistent with what it was
provided so if there are any errors, they will be part of that solution.
The filter, though, will simply smooth out any of the smaller differ-
ences. Using a filter for this application is preferable to optimization
because it is more tolerant to an erroneous input labelling.

However, the results produced by the DT filter depend on a large
part on the parameters used. This can be seen in Figure 4 where the
DTNC filter in particular experiences a dramatic change between the
two σr values. This is unfortunate as the DTNC filter is very good a
preserving large-scale image structures and is desirable to use for la-
bel propagation. Choosing a larger σr will reduce the likelihood of a
0/0 condition occurring. But, not only does it not remove it entirely,
it will produce significantly more blurring in the interpolated map.

4.2. Iterative Refinement

Ideally we would like to choose a small σr to minimizing the blur-
ring while still propagating the provided labelling. To do this we pro-
pose an iterative approach that progressively fills in the 0/0 regions
to generate the final labelling. This acts as a simplified diffusion
procedure to fill in region that the labelling did not reach initially.

Let L(0)
int be the initial map generated using (9). We define a
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Fig. 4: Comparison between the DTNC and DTRF filters for differ-
ent values of σr with σs = 500 and N = 4. Red areas indicate that
(9) was 0/0.

Fig. 5: Depth map produced using DTNC iterative refinement. The
filter parameters were σs = 500, σr = 0.7, N = 4 and NR = 10.

per-iteration confidence map C(i) to be

C(i) =

{
1 L(i−1)

int is 0/0
0 otherwise

. (10)

C(i) is then used as the confidence map in (9) to generate L(i)
int. We

repeat this procedure until no more 0/0 pixels are detected or until
NR iterations have been reached (we have found 10 iterations to be
sufficient in most cases).

The results of the iterative procedure are shown in Figure 5.
They are a significant improvement on the equivalent results pro-
duced by the same filter parameters in Figure 4. Because σr could be
set to a small value, the main edges are well preserved even though
the image was filtered multiple times.

4.3. User Correction

The iterative refinement approach has no impact on the ability of the
method to accept user corrections. Figure 6 shows an image that has
depth values obtained by processing the sequence it is part of using
[11]. In this case, there was a failure in the sparse feature tracking
and so the left-half of the image has no tracked features and therefore
no depth information. The left side of the depth map is completely
wrong because of this.

It is trivial for a user to recognize and correct this with a few
scribbles to indicate the correct depth values in the untracked re-
gions. This correction is shown in Figure 7. The resulting depth
map now has the correct depth and the only modification was to the
input labelling, not the label propagation method.

(a) Original Labelling

(b) Depth Map

Fig. 6: Depth map obtained from the original, automatically ex-
tracted labelling. Filter parameters are σs = 500, σr = 0.7, N = 4
and NR = 10.

(a) Corrected Labelling

(b) Depth Map

Fig. 7: Depth map generated after user-provided correction scrib-
bles. The same filter parameters were used as in Figure 6.

5. CONCLUSION

We have presented a method for interpolating labels, either user-
provided or generated automatically using the domain transform fil-
ter. Specifically we have addressed the numerical issues inherent
with this type of interpolation. While the DTRF is less prone to it
than the DTNC, it is useful to be able to use the DTNC variant as
it produces more distinct edges than the DTRF. We have also shown
how a filter-based approach can be preferable when interpolating po-
tentially erroneous, automatically generated labelling.
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