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ABSTRACT

In this paper, we present a novel method for environmen-

tal sound classification in non-stationary noise environment.

The proposed method mainly consists of three stages: noise

source separation and acoustic feature extraction and multi-

class classification. At first stage, we employ probabilistic

latent component analysis (PLCA) to perform time-varying

noise separation. To alleviate the artifacts introduced by

source separation, a series of spectral weightings is applied

to enhance reliability of audio spectra. At feature extraction

stage, we extract acoustic subspace to effectively characterize

temporal-spectral patterns of denoised sound spectrogram.

Subsequently, regularized kernel Fisher discriminant analysis

(KFDA) is adopted to conduct multi-class sound classification

through exploiting class conditional distributions based on ex-

tracted acoustic subspaces (features). The proposed method

is evaluated with Real World Computing Partnership (RWCP)

sound scene database and experimental results demonstrate

its superior performance compared to other methods.

Index Terms— Sound recognition, PLCA, source sepa-

ration, eigen-decomposition, discriminant analysis

1. INTRODUCTION

Recently, research area of machine audition has gained a

lot of attention [1], where the goal is to recognize real-life

acoustic events by using effective audio signal processing

techniques. Various potential applications promoted those

studies, such as intelligent environment context recognition in

robotics [2] and audio-based surveillance [3]. Initial works on

acoustic event classification mostly followed speech recog-

nition approaches, such as employing the Mel-Frequency

Cepstral Coefficients (MFCCs) to describe sound pattern and

performing classification through HMM modeling [4]. How-

ever, several critical defects restrained availability of speech

recognition techniques for sound event recognition, i.e. the

MFCCs are not robust to noise presence while Gaussian

Mixture Model (GMM) and Hidden Markov Model (HMM)

models are insufficient to fully characterize temporal-spectral

dynamic patterns in non-speech sounds. A thorough compar-

ison of applying conventional audio processing techniques

for sound event recognition can be found in [5], which ex-

tensively investigated acoustic features of spectrograms of

Short-Time Fourier Transform (STFT), Continuous/Discrete

Wavelet Transform (CWT/DWT) and MFCCs together with

conventional classifiers, such as Artificial Neural Network

(ANN) and Learning Vector Quantization (LVQ).

Advanced classification schemes have been examined for

audio classification lately, such as using SVM [6] to exploit

non-linear time-frequency distributions in acoustic events.

However, motivated by biological evidence that local time-

frequency information contributes greatly to human auditory,

more significant progress has been carried out for audio repre-

sentation development. Various novel acoustic features have

been proposed, such as spikegram [7], a neural-spike-like

representation of sound event, likewise, another sparse audio

feature is presented in [2], which is based on matching pur-

suit with Gabor dictionaries. Besides, based on sparse audio

representation, Dennis et al. [8] further developed spike neu-

ral network (SNN) for noise robust sound classification and

achieved superior results comparing to conventional methods.

It is suggested, from psychology of hearing, human be-

ings are able to recognize noise corrupted acoustic events

effortlessly, since we can concentrate on certain sound we are

interested in and isolate it from background noise. This study

endeavors to realize humanlike sound recognition scheme

by employing advanced signal processing techniques. A

three-step framework is proposed, which includes noise re-

duction, robust acoustic feature extraction and multi-class

classification. The noise reduction stage is designated to im-

itate hearing concentration function of human auditory, and

thereupon lays basis for noise robust audio classification. In

order to tackle single channel noise source separation prob-

lem, we employ Probabilistic Latent Component Analysis

(PLCA) algorithm [9], which learns dictionaries and their ac-

tivation weights for representing non-stationary background

noise and sound event separately, and noise source separation

can be effectively performed thereafter; however, it simul-

taneously introduces artifacts (distortions) to the denoised

sound, especially in extremely noisy environment. To allevi-

ate such artifact interference, we develop a series of spectral

weightings to enhance availability of sound spectra based

on characteristic of PLCA model. After noise reduction, we
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Fig. 1. Overview of the propose sound classification system

extract acoustic feature extraction in following steps: 1. uni-

formly spaced spectral triangle filter bank is applied to sound

spectrogram to generate robust spectral feature with low di-

mensionality; 2. we extract acoustic subspace from filtered

spectrogram to characterize predominant patterns of audio

event within/across time and frequency domains, which is

more representative comparing to conventional frame-based

features. In addition, subspace method inherently provides

denoising mechanism [10] and thus exhibits more robust

property. At multi-class environmental sound classification

stage, based on aforementioned audio feature, we adopt reg-

ularized Kernel Fisher Discriminant Analysis (KFDA) to

exploit non-linear class conditional distributions of audio

events, which is equivalent to the method presented in [11].

2. THE PROPOSED APPROACH

As presented in Fig. 1, the proposed method consists of three

main stages: PLCA noise reduction, robust acoustic feature

extraction and KFDA sound classification. In the following

sections, we introduce details in those steps.

2.1. PLCA noise source separation

PLCA is an effective non-negative matrix decomposition al-

gorithm for non-stationary source modeling [9]. The formu-

lation of PLCA can be expressed as:

P (f, t) ≈

C∑

z=1

P (z)P (f |z)P (t|z) (1)

where P (f, t) denotes the (normalized) magnitude of audio

spectrogram at t frame and f frequency band, which is re-

garded as a random variable. P (f |z) is a multinomial distri-

bution representing frequency basis vectors (dictionary) cor-

responding to the sound source, P (z) is the possibility distri-

bution of latent variable z and P (t|z) denotes the latent vari-

able activations along time coordinate. The number of latent

components is denoted by C which is determined by user.

The PLCA decomposition is carried out by minimizing KL

divergence d(P (t, f)||Q(t, f)) between input spectra P (t, f)
and reconstructed spectra Qt(f) =

∑
z P (f |z)P (z)P (t|z).

PLCA is efficient for modeling non-stationary sound since

the learnt dictionary accommodates invariant characteristics

of input sound, for this reason, linear combinations of its

dictionary elements (basis) are sufficient for representing the

time-varying patterns in audio signal.

In sound source separation, input spectrogram is viewed

as a mixture of noise and sound event that can be written as:

P (f, t) ≈
∑

z∈S

P (z)P (f |z)P (t|z) +
∑

z∈N

P (z)P (f |z)P (t|z)

(2)

where P (f |z) for z ∈ N and P (f |z) for z ∈ S represent

the noise dictionary and sound events dictionary, respectively.

Noise reduction can therefore be realized by setting noise ac-

tivations P (z) for z to zero, therefore, denoised sound spectra

can be obtained by:

P (f, t) ≈
∑

z∈S

P (z)P (f |z)P (t|z) (3)

We perform noise source separation in a semi-supervised

manner, in which noise dictionary P (f |z) for z ∈ N is

trained by background noise collected beforehand; while

sound event dictionary P (f |z) for z ∈ S and dictionary ele-

ment activations P (z)P (t|z) for z ∈ S are estimated through

the PLCA decomposition in (2).

Though PLCA presents state-of-the-art performance for

noise reduction [12], artifacts are produced through noise

source separation process, especially under extremely noisy

conditions, e.g. -5dB SNR. Increasing EM iterations for

KL divergence minimization and initializing more latent

components in PLCA model are possible ways to suppress

artifacts; however, they introduce heavy computation load

which greatly degrade algorithm availability. In this work,

we present an alternative solution to enhance intelligibility

of denoised sound through focusing on frequency bands with

fewer artifacts generated. It is grounded on the fact in human

auditory that noise corrupted sound is recognized via process-

ing the audio in local high SNR frequency bands [13]. We

realize such spectral concentrating mechanism by assigning a

series of spectral reliability weighting, which is derived from

reconstruction error of PLCA model for background noise

estimation. The frequency band-wise reconstruction error
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Fig. 2. Reliability weights for denoised sound spectra

possibility distribution is expressed as:

P (f |e) =
∑

t

(Xt,f − X̃t,f )
2/

∑

f

∑

t

(Xt,f − X̃t,f )
2 (4)

where X is input noise spectrogram and X̃ is reconstructed

spectrogram by PLCA model. P (f |e) presents spectral error

possibility distribution. Based on which, a spectral reliability

measure can be derived as:

ωf = 1− p(f |e)/max(p(f |e)) (5)

from which lower error rate bands are assigned with higher

weights, in contrast, high error possibility bands will be in-

dexed by smaller weights to suppress the significance. A

series of spectral reliability weightings for babble noise is

shown in Fig.2 and it can be applied to audio spectrogram

by S·t = X·t ·ωf , where S·t denotes t−frame denoised spec-

trum, X·t represents enhanced spectral feature by weightings

ωf .

2.2. Robust feature extraction

Based on the aforementioned process, we further develop

robust acoustic representation by using triangle filter bank

and eigen-decomposition. Mel-filter bank is well developed

for characterizing speech signal. We followed the Mel-filter

banks idea and design a uniformly positioned triangle-filter

bank to describe sound events, which renders three main

advantages: First, the triangle-filter produces more robust

audio representation by introducing fuzzy assignment over

audio spectra. Second, in contrast to Mel-filter bank, which

emphasizes on low band contents where speech signal mainly

lays in, the uniformly positioned filters render identical res-

olution across all frequency bands, and thus capture richer

temporal-spectral dynamics in sound event. Besides, filter

bank effectively reduce the feature dimension and therefore

facilitates sound classification. The filtering process is ex-

pressed as:

s̃n =
∑

f

αn(f)s(f) (6)

where s(f) denotes denoised audio spectum corresponding

to f band, αn(f) represent spectral weighting coefficients of

n-th filter. Then filtered spectrum can be written as S̃t =
[s̃1, ..., s̃n]

T .

Based on filtered audio spectrogram, [S̃1, ..., S̃T ], S̃T ∈
ℜN×1, we perform eigen-decomposition to further charac-

terize significant temporal-spectral spectral patterns in sound

event. The eigen decomposition to can be written as:

RS̃T
= UΛUT , RS̃T

= E{StS
′

t} (7)

where U = [u1...uN ] are the eigenvectors characterizing pre-

dominant patterns of sound and Λ = diag(λ1...λN ) is diag-

onal eigenvalue matrix. The contribution ratio of k-th eigen-

vector uk is defined as:

ηk = λk/

N∑

i=1

λi (8)

which shows its signicance in representing the audio. We

select the first K principle eigenvectors with highest con-

tribution ratios UK = [u1...uK ],K < N to form a sound

representation. In addition, the eigenvectors in UK are

normalized by their contribution ratios through computing

ũk = {λk/
∑K

i=1 λi} · uk, k = 1...K which follows a simi-

lar manner to [14]. Contribution weightings give prominence

to the principle eigenvectors for describing sound event. In

the end, we concatenate K normalized principle eigenvectors

to build acoustic feature vector.

2.3. Sound classification by regularized kernel Fisher dis-

criminant analysis

We employ KFDA to perform sound classification. Let

Xi = {xi
1...x

i
Ni

} be audio features from class i. φ(x) is

nonlinear mapping of input vector x into kernel feature space

F . KFDA seeks a direction w ∈ F maximizing class separa-

bility which is defined as:

J(w) =
wTS

φ

B
w

wT (Sφ

B
+λǫ)w

, Sφ
B = (mφ

1 −mφ
2 )(m

φ
1 −mφ

2 )
T

Sφ
W =

∑

i

∑

x

(φ(x)−mφ
i )(φ(x)−mφ

i )
T ,mφ

i =
1

Ni

Ni∑

n=1

φ(xi
n)

(9)

where mφ
i denotes class center, while Sφ

B and Sφ
W are within-

class and between-class variances in kernel feature space.

Since the within-class variance may be singular, a regulariza-

tion term is added. It is typical Rayleigh quotient and solution

can be found in [15].

3. EXPERIMENTS

3.1. Dataset

We evaluate the proposed sound classification method using

RWCP sound scene dataset [16], in which sound files are

recorded at 48 kHz sampling rate with high SNR. There are

105 categories of sounds including some duplicated classes.

5987



Method Proposed Dennis

[8]

YE

[11]

MF-

HMM[8]

MFCC-

HMM[8]

Clean 100% 98.5% 100% 95.7% 99.0%

20dB 100% 98.0% 98.5% 94.2% 62.1%

10dB 100% 95.3% 98.5% 84.7% 34.4%

0dB 100% 90.2% 59.5% 69.5% 21.8%

-5dB 99.0% 84.6% 30.0% 53.8% 19.5%

Avg. 99.6% 93.3% 77.3% 79.6% 47.3%

Table 1. Results comparison on 10 sound classes

such as 5 types of coin sounds. We removed duplicated

classes and thereafter obtained 62 distinct sound categories

with 5949 samples for evaluation. Typical non-stationary

babble noise is extracted from NOISEX92 database for eval-

uating the robustness of the proposed method.

3.2. Parameter setting

We set window length to 10ms with 7.5ms overlapping in

Short-time Fourier Transform (STFT). At PLCA noise reduc-

tion stage, background noise dictionary size and foreground

sound event dictionary size are both fixed to 50, since it was

found enough to model babble noise and sound events. The

number of EM iterations is experimentally set to 100. N = 50

triangle-filters are used to build filter bank in (6). We concate-

nate K = 3 principle eigenvectors with highest contribution

ratio to form audio representation, from which over 95% of

patterns in sound are accommodated according to their con-

tribution ratios (7). The regularization term in (8) is set to

10−4. 10 seconds babble noise are utilized for training the

noise model in PLCA, which is removed at noisy audio sam-

ples generation stage to ensure there is no overlap in training

and testing background sound. In KFDA, spread parameter in

gauss kernel is set to 0.3.

3.3. Experiment 1: validation by comparison

In first experiment, we compare the proposed approach with

other methods [8,11]. The evaluation protocol is similar to

[8], in which 10 classes of sound events are selected from

RWCP database, i.e. bells5, bottle1, buzzer, cymbals, horn,

kara, metal15, phone4, ring and whistle1. For each class,

40 files are randomly selected, from which half are used for

training and the other half are for testing. The babble noise is

added to testing data with 20, 10, 0 and -5 dB SNRs. Final

results are computed by averaging the outcomes across 5 runs

of test. Meanwhile, several conventional methods such as

MFCC with HMM and Mel-Frequency (MF) with HMM are

also evaluated [8]. According to results shown in Table.1, pro-

posed scheme achieved favorable classification accuracy for

all noise conditions and significantly outperformed all other

methods. In addition, we plot all features extracted from 10

categories of sounds corrupted with 20 to -5 dB babble noise

Fig. 3. Robust feature extracted from noise corrupted sounds

Fig. 4. Classification results on 62 sound classes with various

noise intensities

in Fig. 3, from where clusters for each sound class can be

clearly observed, which manifests robustness of the proposed

feature. In addition, significance of adopting noise reduction

together with spectra enhancement can be observed through

comparing our result with result shown by [11], in which a

similar audio (subspace) representation is employed. As a

conclusion, the proposed method greatly outperform [11] un-

der extremely noisy conditions.

3.4. Experiment 2: evaluation with more data

To further confirm superiority of the proposed method, we

perform more extensive sound classification test using RWCP

database with 62 sound classes and 5949 samples. The perfor-

mance is measured by 10-fold cross validation, in which clean

data is applied for training and test samples are corrupted by

babble noise with 20, 10, 5, 0 and -5dB SNRs, respectively.

From results in Fig.4, proposed method obtained an average

accuracy of 91.04%. Even under challenging -5dB SNR con-

dition, it achieved more than 90% classification accuracy.

4. CONCLUSION

This paper proposed novel noise robust sound classification

approach presenting favorable performance in severe acous-

tic environment. The proposed method assembles advanced

signal processing techniques to realize the human auditory

mechanism, in which noise corrupted sound event is recog-

nized based on part of spectral information that with high

SNR. In detail, three main steps are included: noise source

separation, robust acoustic feature extraction and regularized

KFDA multi-class classification. We demonstrated the pro-

posed method with RWCP sound scene database. Extensive

experiments validated superiority of the proposed approach.
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