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ABSTRACT
The three-level clipped input least-mean-square (CLMS) adaptive
algorithm is known to have low complexity that is suitable for the
identification of long finite impulse response of unknown systems.
In this paper we analyze the performance of CLMS which allows
one to gain insights into its convergence property and the amount
of steady-state misalignment error for both time-invariant and time-
varying systems perturbed by correlated Gaussian input. Arising
from our analysis, we derive the optimal step-size for CLMS to
achieve the minimum possible steady-state misalignment and com-
pare its results with the performance of LMS adaptive algorithm.
The accuracy of our derivations is evaluated with simulation results.

Index Terms— Adaptive filter, Clipped input LMS, Misalign-
ment, Tracking.

1. INTRODUCTION

Adaptive system identification is a well-known topic in signal pro-
cessing [1]. In applications such as acoustic echo cancellation
(AEC) and network echo cancellation [2], adaptive algorithms have
been employed to estimate a long (unknown) impulse response.
For such applications, the high computational requirement results
in the demand for low-complexity adaptive algorithms. Several
efficient variants of the least-mean-square (LMS) adaptive filtering
algorithm including signed-regressor LMS (SR-LMS) [3][4], sign-
error LMS [5][6], sign-sign LMS [7][8], sequential-LMS [9][10],
periodic-LMS [11], MMax-LMS [12][13] as well as the three-level
clipped LMS (CLMS) algorithm [14] have been proposed for system
identification.

Among these low-complexity adaptive algorithms, CLMS is one
of the most efficient [14][15]. The CLMS algorithm achieves com-
plexity reduction by employing a three-level quantized input sig-
nal for updating its filter coefficients. As shown in [14], compared
to the SR-LMS algorithm, CLMS can achieve higher convergence
rate with lower computational load. As the convergence behavior of
CLMS depends on the step-size and clipping threshold, analysis of
its convergence performance is of practical importance. Such anal-
ysis not only allows one to gain insights into its behavior, it also
allows one to select suitable CLMS parameters in order to achieve
the desired performance under various operating conditions.

The convergence and steady-state misalignment of the CLMS al-
gorithm has recently been analyzed for i.i.d. input signals [16][17].
As opposed to that presented in [16], we derive, in this work the
steady-state misalignment for correlated Gaussian input data. Anal-
ysis of such input is important since many practical signals such
as speech, music and biological signals, which can be modeled as
Gaussian signals, are correlated [18][19][20]. In addition, we per-
form the analysis for both time-invariant (TI) and time-varying (TV)
systems and show that, the tracking capability of SR-LMS is higher
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Fig. 1. Adaptive system identification.

than CLMS (with a clipping threshold of greater than zero). On the
contrary, for a TI system, the convergence capability of CLMS is su-
perior than SR-LMS. In addition, our analysis reveals that the effect
of the clipping threshold varies under different signal-to-noise ratio
(SNR) conditions. Unlike the work of [16], we further derive an ap-
proximate optimal step-size for CLMS to achieve the minimum pos-
sible steady-state misalignment for both TI and TV systems. With
this step-size, we compare the steady-state performance of CLMS as
well as its complexity with those of the LMS algorithm.

2. PROBLEM DEFINITION AND REVIEW OF CLMS

Figure 1 shows a schematic of adaptive filtering in the context of
system identification application. The input signal x(n) is first
filtered by the unknown time-varying impulse response h(n) =
[h0(n), . . . , hL−1(n)]

T of length L and the output signal is given
by y(n) = hT (n)x(n), where x(n) = [x(n), . . . , x(n−L+1)]T .
The time variation of h(n) can be modeled by [21]

h(n+ 1) = h(n) + c(n) (1)

where c(n) determines the amount of time variation of h(n) such
that for a TI system, c(n) = 0L×1. For mathematical tractability,
we assume that c(n) is statistically stationary with E{c(n)} = 0.

The output signal of the unknown system is often corrupted by
ambient noise and the desired signal can be expressed as

d(n) = y(n) + w(n) (2)

where w(n) is the uncorrelated ambient noise which may include
measurement and/or environmental noise. The output signal of the
adaptive filter can be expressed as

ŷ(n) = xT (n)ĥ(n) (3)

where ĥ(n) = [ĥ0(n), . . . , ĥL−1(n)]
T is the adaptive filter coeffi-

cient vector of length L. The aim of CLMS is to estimate h(n) using

ĥ(n+ 1) = ĥ(n) + μe(n)x̃(n) (4)
where μ is the step-size of CLMS which controls its convergence
rate and the error signal e(n) is defined as

e(n) = d(n)− xT (n)ĥ(n). (5)
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In addition, x̃(n) = [x̃(n), . . . , x̃(n−L+1)]T in (4), is the clipped
tap-input vector with elements being obtained by the three-level clip-
ping of x(n) according to the following relation

x̃(n− k) =

⎧⎨⎩ 1 x(n− k) > δ
0 −δ < x(n− k) ≤ δ
−1 x(n− k) ≤ −δ

, 0 ≤ k ≤ L− 1

where δ is the clipping threshold.
We therefore note that when δ = 0, the three-level clipping

mechanism is equivalent to two-level clipping and hence, CLMS is
equivalent to SR-LMS. On the other hand, when δ increases, more
elements in x̃(n) becomes zero resulting in less frequent updating
of ĥ(n) in (6). When δ approaches the upper bound of |x(n)|, this
update process is reduced further giving an even lower convergence
performance.

3. STEADY-STATE MISALIGNMENT ANALYSIS OF CLMS

To analyze the steady-state performance of CLMS, we employ the
normalized misalignment given by ϕ̃(n) = ϕ(n)/‖h(n)‖2 where
ϕ(n) = ‖ĥ(n) − h(n)‖2 is the misalignment and ‖ · ‖ is the l2-
norm [22]. Defining v(n) = ĥ(n)−h(n) as the L×1 misalignment
vector, ϕ(n) can be expressed as

ϕ(n) = vT (n)v(n) = tr
{
v(n)vT (n)

}
, (6)

where tr{·} denotes the trace of a matrix. The steady-state misalign-
ment η is therefore defined as

η = lim
n→∞

E
{
ϕ(n)

}
= lim

n→∞
tr{Q(n)} (7)

where Q(n) = E{v(n)vT (n)}.
To derive η, we utilize (1), (4), and (5) giving

v(n+ 1) = ĥ(n+ 1)− h(n+ 1)

=ĥ(n)− h(n)− c(n) + μx̃(n)[d(n)− xT (n)ĥ(n)]. (8)

Substituting (2) to (8), we obtain the time-varying difference be-
tween the adaptive filter and the unknown system given by

v(n+ 1) = v(n)− c(n) + μx̃(n)
{
w(n)− xT (n)v(n)

}
. (9)

Assuming that c(n) is mutually independent with x(n) and v(n),
and defining C = E{c(n)cT (n)}, we can express (9) as

Q(n+ 1) = Q(n) +C+ μ2E
{
x̃(n)w2(n)x̃T (n)

}
− μE

{
v(n)

[
x̃(n)xT (n)v(n)

]T}
− μE

{[
x̃(n)xT (n)v(n)

]
vT (n)

}
+ μ2E

{
x̃(n)xT (n)v(n)vT (n)x(n)x̃T (n)

}
.(10)

Denoting σ2
w = E{w2(n)} as the noise variance and assuming that

w(n) is uncorrelated with x(n), we can express (10), for small val-
ues of μ [1], as

Q(n+ 1) = Q(n) +C+ μ2σ2
wE{x̃(n)x̃T (n)}

− μE{v(n)vT (n)x(n)x̃T (n)}
− μE{x̃(n)xT (n)v(n)vT (n)}. (11)

The assumption of small step-size for deriving (11) is reasonable
since the maximum value of μ to ensure stability is inversely propor-
tional to the maximum eigenvalue of input correlation matrix [14].
Hence, a small value of μ ≤ 0.001 is assumed for a lightly colored

input signal vectors of length L = 1024. As a result, μ2 < 10−6

and the last term of (10) is negligible and hence the approximation
in (11) is reasonable.

Similar to [23], assuming that x(n) and v(n) are independent,
(11) can be simplified as

Q(n+ 1) = Q(n) +C+ μ2σ2
wR̃

− μE{v(n)vT (n)}E{x(n)x̃T (n)}
− μE{x̃(n)xT (n)}E{v(n)vT (n)} (12)

where R̃ = E{x̃(n)x̃T (n)} is the covariance matrix of x̃(n). Un-
der steady-state condition, we assume that the adaptive algorithm
has converged so that ϕ(n) varies to within an expected value giving

lim
n→∞

Q(n+ 1) = lim
n→∞

Q(n) = Q. (13)

Taking this into account, (12) can then be rewritten for the steady
state as

Q = Q+C+ μ2σ2
wR̃

− μQE{x(n)x̃T (n)} − μE{x̃(n)xT (n)}Q, (14)

resulting in

μ−1C+ μσ2
wR̃ = QE{x(n)x̃T (n)}+ E{x̃(n)xT (n)}Q. (15)

To further simplify (15), it has been shown in [14] that, for tap-input
signal x(n) with Gaussian distribution,

E
{
x(n)x̃T (n)

}
=

α

σx
E
{
x(n)xT (n)

}
=

α

σx
R (16)

where R = E{x(n)xT (n)} is the covariance matrix of x(n) and
α =

√
2/π exp(−δ2/(2σ2

x)). Substituting (16) into (15), we obtain
μσx

α
σ2
wR̃+

σx

α
μ−1C = QR+RQ. (17)

We note that for input signals which exhibit short-time correla-
tion, R �= σ2

xI and therefore we decompose R using R = UΛUT ,
where U is the orthogonal matrix containing the eigenvectors and
Λ = diag{λ1, . . . , λL} is a matrix of eigenvalues. We then pre-
and post-multiply (17) by UT and U, respectively, to achieve

μσx

α
σ2
wR̃

′ +
σx

α
μ−1C′ = Q′Λ+ΛQ′ (18)

where R̃′ = UT R̃U, Q′ = UTQU, and C′ = UTCU. For
steady-state misalignment, we note, from (7) and (13), that η =
tr{Q}. Post-multiplying (18) by Λ−1 and taking the trace result
in

tr{Q′} =
μσx

2α
σ2
wtr{R̃′Λ−1}+ σx

2α
μ−1tr{C′Λ−1}. (19)

Due to the orthogonal property of U, tr{R̃′Λ−1} = tr{R̃R−1},
tr{C′Λ−1} = tr{CR−1}, and tr{Q′} = tr{Q}. As a conse-
quence, we arrive at the important relation

η =
μσx

2α
σ2
wtr{R̃R−1}+ σx

2α
μ−1tr{CR−1}. (20)

It can be seen that the first term, which describes the conver-
gence performance, is independent of time variation of h(n)- it com-
pletely determines η for a TI system. The second term is therefore
an excess steady-state misalignment for TV systems and it defines
the tracking performance of CLMS.
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3.1. Insights Into the Steady-state Misalignment for TI Systems

For a TI system, we note from (20) that η is proportional to μ and
hence, with reducing μ, corresponding to a reduction in speed of
convergence, η is reduced as expected. In addition, a higher σ2

w

results in a higher η and a reduction in steady-state performance is
exhibited.

To describe the variation of η with δ, we note that the effect of
δ in (20) appears in both α and R̃. We can see that the number of
elements in x̃(n) that are equal to ±1 decreases with increasing δ.
Therefore, when δ increases, R̃ → 0L×L and hence, tr{R̃R−1} →
0. On the other hand, α reduces with increasing δ. As a result, the
first term of η in (20) may increase or decrease. This implies that
variation of η with δ is dependent on the structure of R and how
the terms tr{R̃R−1} and α in (20) decay with δ. Simulations with
input signals having various correlation matrix show that for small
values of δ, the term tr{R̃R−1} decays more significantly than α
with δ. It is therefore expected that the convergence performance of
CLMS is higher than SR-LMS.

3.2. Insights Into the Steady-state Misalignment for TV Systems

As can be seen from (20), for a TV system, the second term in (20)
is non-zero and hence η increases w.r.t. any variations of the TI sys-
tem. This term describes the tracking capability of CLMS and we
note that with increasing μ, the effect of variation of h(n) on η re-
duces. This implies that CLMS can better track the variations of
h(n). We also note from (20) that the second term is inversely pro-
portional to α. Since α reduces with increasing clipping threshold δ,
the tracking capability of CLMS reduces with increasing δ. In addi-
tion, the tracking capability of SR-LMS (as a special case of CLMS
with δ = 0) is better than CLMS (with δ > 0.)

While the convergence performance of CLMS is proportional to
σ2
w, its tracking capability is independent of noise. As a result, when

SNR is high in a TV environment, the first term in (20) is small
and hence, reducing δ or employing SR-LMS instead of CLMS will
achieve good tracking capability and a low η is expected. On the
other hand, when the SNR is low, the first term dominates and hence
increasing δ will ensure good convergence performance for CLMS
resulting in a low η.

To further illustrate the effect of a TV system, we consider, sim-
ilar to [13][16], the modified first-order Markov process [24] de-
scribed by

h(n+ 1) = ξh(n) +
√

1− ξ2s(n) (21)

where 0 << ξ < 1 defines the dynamics of the TV system, s(n) =
[s0(n), . . . , sL−1(n)]

T is a WGN process with zero mean and vari-
ance σ2

s . According to the definition of c(n) in (1), we obtain

c(n) = −(1− ξ)h(n) +
√

1− ξ2s(n). (22)

Assuming E{h(n)} = 0 and substituting (22) to (9),

η ≈ μσx

2α
σ2
wtr{R̃R−1}+ σx

μα
(1− ξ)σ2

str{R−1}, (23)

where the approximation is due to the dependency of c(n) on v(n).
However, for ξ ≈ 1, which is practically reasonable to describe
the variation of an acoustic room impulse response [13], theoretical
derivation of η using (23) is almost accurate.

For the case where the input signal is i.i.d. Gaussian, R̃ = σ̃2
xI

where σ̃2
x = erfc

{
δ/(σx

√
2)
}

[16] and hence, (23) can be simpli-
fied, for i.i.d. input signals to

η ≈ μ

2α

σ2
wσ̃

2
x

σx
L+

1

μα

σ2
s

σx
(1− ξ)L (24)

Equation (24) is a simplified version of η derived in [16] for i.i.d.
inputs which is valid for small step-size.

3.3. Derivation of the Optimal Step-size for CLMS

As evident from (20), there is a trade-off between tracking and con-
vergence performance of CLMS due to step-size μ. Employing (20),
we further proceed to derive an optimal step-size for which CLMS
achieves its lowest possible η. Differentiating (20) with respect to μ
and equating the resultant equation to zero,

μopt ≈
√

tr{CR−1}
σ2
wtr{R̃R−1}

. (25)

Therefore when C → 0, which corresponds to a slowly varying
system, μopt → 0. In addition, tr{CR−1} and tr{R̃R−1} in (25)
depend on the structure of R which, in turn, is dependent on the
input signal correlation. For the special case where the variation of
h(n) is represented by (21), we achieve, through the use of (25),

μopt ≈
√

2(1− ξ)σ2
str{R−1}

σ2
wtr{R̃R−1}

. (26)

Note that with increasing δ, the value of tr{R̃R−1} reduces
and hence μopt increases to achieve good tracking capability. It is
also important to note that while tr{R̃R−1} may approach zero,
μopt may not approach infinity and it should be kept small since its
value must be bounded by the stability of convergence. Therefore
the modified μopt can be given by

μopt,modified = min{μopt, μmax} (27)

where, as derived in [14], μmax = α/(σxλmax) such that λmax is
the maximum eigenvalue of R.

4. SIMULATION RESULTS AND FURTHER DISCUSSION

For simulations, we consider h(n) defined by (21) where h(0) is a
random sequence of length L = 256 samples with normal distribu-
tion. A Gaussian colored signal x(n) is obtained by filtering a WGN
through a lowpass FIR filter with coefficients [0.3574, 0.9, 0.3574]
chosen to generate a speech-like spectrum [25]. A sampling rate of
fs = 8000 Hz is considered throughout the simulations.

We first investigate the steady-state normalized misalignment of
CLMS for 0.99999 ≤ ξ ≤ 1. In this illustrative example, we used
δ = 0.4σx, μ = 0.001 and SNR=30 dB. Figure 2 (a) shows ϕ̃(n)
along with its corresponding η̃ = η/‖h(n)‖2 computed using (23).
The horizontal solid lines denote the analytically determined η̃ while
the dashed lines denote the simulated steady-state of ϕ̃(n) computed
by averaging over 10 s after the algorithm converged to its steady-
state. As can be seen, with increasing ξ, the steady-state misalign-
ment improves. We also note that η̃ approximates the simulated val-
ues of ϕ̃(n) well- hence verifying our analysis of CLMS for both TI
(ξ = 1) and TV (ξ < 1) systems.

We next evaluate the theoretical results of the steady-state mis-
alignment for 10 ≤ SNR ≤ 40 dB when ξ = 1, μ = 0.001, and
δ = 0.3σx. Figure 2 (b) shows the variation of ϕ̃(n) along with
its corresponding values of η̃ for different SNRs. As can be seen,
the steady-state values of ϕ̃(n) reduces with increasing SNR in ac-
cordance with (23), i.e., a lower σ2

w results in a lower steady-state
misalignment. As can be seen from Fig. 2 (b), η̃ sufficiently approx-
imates the corresponding steady-state values of ϕ̃(n).

To evaluate the variation of steady-state misalignment of CLMS
with respect to 0 ≤ δ ≤ 2σx, we consider both TI and TV systems
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Fig. 2. Normalized misalignment of CLMS with a correlated Gaus-
sian input, (a) for different values of ξ with SNR=30 dB, (b) for
different values of SNR for a TI system.
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Fig. 3. Normalized misalignment of CLMS with respect to δ/σx

when μ = 0.5× 10−3 and μ = 0.15× 10−2 for TI and TV systems
with correlated Gaussian input.

with ξ = 1 and 0.999999, respectively. Figure 3 shows the normal-
ized steady-state misalignment of CLMS against δ/σx for step-sizes
μ = 0.5 × 10−3 and μ = 0.15 × 10−2 when SNR=30 dB. These
results are obtained by averaging over five independent trials. The
solid lines illustrate the analytically determined values of η̃ while
results obtained by simulation are shown by dashed lines. For a TI
system, the amount of normalized steady-state misalignment reduces
with increasing δ; an approximately 4 dB improvement when δ in-
creases from 0 to 2σx. On the other hand, the normalized steady-
state misalignment increases by approximately 9 dB for a TV sys-
tem. This result demonstrates that the tracking capability of CLMS
improves with reducing δ while the steady-state convergence capa-
bility (defined as the amount of steady-state misalignment for a TI
system) decreases. Therefore there is a trade-off between tracking
and convergence performance for CLMS.

In addition, from Fig. 3, a reduction in μ from 0.15 × 10−2

to 0.5 × 10−3 causes approximately 5 dB increase in normalized
steady-state misalignment for a TV system while a 5 dB improve-
ment in steady-state misalignment is observed for a TI system.
Therefore, similar to the effect of δ, there is a trade-off between
the tracking and convergence performance of CLMS with respect to
the value of μ for CLMS. We also note that while the steady-state
misalignment increases with μ for a TI system as expected, there
exists an optimal μ for a TV system. This optimal value may be
approximated using (27). For the simulation conducted above, we
achieve μopt ≈ 1.8 × 10−3 while the simulated result shows that
μopt ≈ 1.6× 10−3. The difference between the steady-state values
of ϕ̃(n) resulted from these two values of μ is 0.14 dB, which is
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Fig. 4. (a) Variation of μopt computed using (26) against δ/σx when
ξ = 0.9999999, (b) Variation of η for CLMS and LMS when ξ =
0.999999 and 0.9999999.

negligible in practical applications.
We now evaluate the variation of μopt with δ for the TV system

defined by (21). We confine 0 ≤ δ ≤ 2σx such that μopt < μmax

and hence, μopt,modified = μopt. Figure 4 (a) shows the variation
of μopt, computed using (26), with δ/σx when ξ = 0.999999 and
0.9999999. As can be seen, a higher δ results in a higher μopt. In
addition, a higher degree of time variation of the unknown system
(with a smaller ξ) results in a higher value for μ. Both of the above
results are in conjunction with the simulations.

Figure 4 (b) compares the variation of η in CLMS and LMS
for TV system. We consider μ = μopt for CLMS and the value
of μ for LMS is considered so that to LMS achieves the same con-
vergence rate as that of CLMS for TV system with ξ = 0.999999
and ξ = 0.9999999. In this simulation, we have used L = 256,
δ = 0.6 and SNR=30 dB. The value of step-size is μ = 0.0062337
for CLMS and μ = 0.0016 for LMS when ξ = 0.999999. In
addition, μ = 0.0019558 for CLMS and μ = 0.0006 for LMS
when ξ = 0.9999999. Results are obtained by averaging over five
independent runs. As can be seen, the steady-state misalignment
performance of LMS is 3.8 dB and 1.6 dB lower than CLMS for
ξ = 0.999999 and ξ = 0.9999999, respectively. This good per-
formance is achieved at the cost of increase in computational com-
plexity of LMS. The reduction of complexity in CLMS is in the co-
efficient update process (4). Since input elements are now 0, 1 and
-1, the number of multiplications is L times less than that of LMS at
each iteration. On the other hand, the number of additions is reduced
depending on the number of elements of input vectors having values
less than δ. In the current simulation with Gaussian distribution and
δ = 0.6σx, about 50% of additions is eliminated at each iteration.

5. CONCLUSION

The steady-state misalignment error of CLMS for system identifica-
tion is analyzed for correlated Gaussian input signals for both time-
invariant and time-varying systems. We showed that the tracking ca-
pability of CLMS improves with reducing clipping threshold while
the convergence capability of CLMS decreases. In high SNR envi-
ronments, a low clipping threshold will achieve good convergence
and tracking capabilities. We then derived an optimal step-size of
CLMS to achieve the minimum possible steady-state misalignment
and showed that CLMS performance using optimal step-size is com-
parable with that of the LMS algorithm, while we achieve a consid-
erably less computational load in CLMS.
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