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ABSTRACT

This paper presents a novel method for the compensation
of near-end interferences in acoustic echo cancellation. The
technique is derived from a rigorous analysis dealing with the
statistical impact of the update over the “look-ahead” error.
The outcome is a well-conditioned problem, whose numeri-
cal solution is shaped from maximum-likelihood principles.
Results on a realistic simulated scenario show the excellent
performance and robustness of the proposed method.

Index Terms— Acoustic cancellation, near-end signal
compensation, autoregressive model, maximum likelihood.

1. INTRODUCTION

Acoustic echo cancellation (AEC) in non-stationary noisy en-
vironments [1–3] is considered to be a challenging problem
not fully solved. Due to the long nature of acoustic paths,
the adaptation of the canceller coefficients in the frequency
domain (FD) is preferred, not only because of its computa-
tional savings, but also for its faster speed of convergence. In
addition to that, the orthogonality properties of the frequency-
domain basis permits the independent adaptation of each
spectral weight, therewith providing frequency-selective im-
munity against interferences and background noise that may
be appear in the near end [4].

This important aspect, namely robustness against near-
end signals, has been a problem thoroughly studied during
the last decade [2–7]. A popular approach thereto is the use
of double-talk detection (DTD) [2,3], in order to literally stop
the filter update when near-end activity is detected. A more
elegant methodology though is the use of a frequency-tailored
step size [4] to perform a sort of “soft” DTD on every spectral
bin independently. Despite the existing consensus on the the-
oretical framework [8] of this second approach, estimating the
terms involved in the optimal FD step size is extremely chal-
lenging, as that is actually an ill-posed problem. In the prac-
tice, the existing works [5–7] perform in real non-stationary
acoustic scenarios far from optimally.

This paper discloses a novel estimation framework that
proves the theoretical solution [4, 8] to be successful in the

practice. The adoption of a “look-ahead” strategy as mech-
anism to obtain well-conditioned solutions is the main novel
aspect of the method. Furthermore, the large number of
parameters to estimate is substantially reduced by means
of maximum-likelihood noise-compensated autoregressive
estimation (ML-NCAR), a topic studied in depth by the au-
thor [9, 10]. This aspect is also key in preventing overfitted
solutions. The paper contents follow: the optimal FD-AEC
fundamentals are presented in Sec. 2, the analytical frame-
work and the proposed numerical method are exposed in
Sec. 3 and Sec. 4 respectively, the performance evaluation is
included in Sec. 5, finally, the conclusions close the paper.

2. OPTIMAL FREQUENCY ADAPTIVE FILTER

A linear adaptive canceller consists of an L-tap transversal
filter (FIR) with output given by

ypnq “ řL´1
�“0 w�xpn ´ �q (1)

where xpnq is the far-end signal, n denotes (discrete) time,
and w� are the filter coefficients. The frequency-domain (FD)
convolution is an efficient way to obtain the filter output

ym “ q ˝ `
F´1pWm ˝ Xmq˘

(2)

where subscript m is the block index (hence related to time),
the operation ˝ denotes element-by-element multiplication,1

F is theN -point DFT (discrete Fourier transform) matrix, and
theN -point column vectors Wm and Xm are built as follows

Wm “ F
“
wm,0 ¨ ¨ ¨ wm,L´1 0 ¨ ¨ ¨ 0‰T (3)

Xm “ F
“
xpmM´N` 1q ¨ ¨ ¨ xpmMq‰T

. (4)

The operation (2) delivers in realityM “ N´L`1 valid out-
put samples of the transversal filter, hence the window vector
is defined accordingly q “ r0N´M 1M sT . Without loss of
generality,N is considered to be power of 2.

The error between the reference zpnq and the canceller
output ypnq in a block is thus obtained as

em “ “
0 ¨ ¨ ¨ 0 zppm´1qM` 1q ¨ ¨ ¨ zpmMq‰T ´ ym. (5)

1The Hadamard vector product ˝ is often replaced in the literature by the
product of one vector with a diagonal matrix built with the other vector.
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At the expense of an output delay equal to the block size M ,
obtaining the filter output as in (2) is computationally more
efficient than the direct FIR evaluation (1). Moreover, updat-
ing the FD weight (3) explicitly is preferable (instead of w�)
as it brings computational savings as well as attractive con-
vergence benefits. This popular FD update corresponds to

Wm`1 “ Wm ` F
`
p ˝ `

F´1pμm ˝ Umq˘˘
(6)

where Um is the estimated weight mismatch, μm is the FD
step size vector, and p “ r1L 0N´LsT makes the overall
weight update valid only in its first L time coefficients. The
estimate of the weight mismatch Un corresponds to

Um “ R´1
m

`
Xm̊ ˝ pFemq˘

(7)

where ˚ denotes complex conjugate, and Rn “ EtXnX
H
n u is

the autocorrelation matrix, which results to be diagonal. Here
and in the sequel, Et¨u denotes statistical expectation, and H

the hermitian operator (transpose and complex conjugate).
In the practice, the reference signal zpnq “ dpnq ` vpnq

is composed of the actual echo dpnq and the near-end signal
vpnq. The reference signal can be thus described spectrally as
Zk “ Dk ` Vk, where Dk and Vk corresponds to the spec-
tral samples of dpnq and vpnq respectively, and subindex k
is the frequency bin. However, the near-end samples Vk do
not represent a valid reference in the update, hence corrupt-
ing the update (6) of the filter. An elegant way to overcome
this drawback is namely to select an appropriate value for the
step μm at each block update: the optimal FD step was found
in [4, 8] to be2

μm,k “
E

!ˇ̌
Dm,k ´ Ym,k

ˇ̌2)
E

!ˇ̌
Vm,k

ˇ̌2)
` E

!ˇ̌
Dm,k ´ Ym,k

ˇ̌2) (8)

which in plain words represents the percentage of residual
echo inside the error. The numerical evaluation of the optimal
step (8) has been matter of study during the last decade [5–7].
This estimation task is a challenging problem as neither resid-
ual echo nor near-end samples are directly available.

3. FULL-WEIGHT UPDATE IMPACT

As the full-weight update yields minimum a posteriori square
error [11], the canceller weights get corrupted with the near-
end signal vpnq present in the reference zpnq. Assessing ob-
jectively the quality of the update requires testing data statis-
tically independent from the training data. A tentative choice
is the data from the next pm ` 1qth block. Therefore, we
consider the following three errors

Ek “ Zm,k ´Wm,kXm,k (9a)
E1

k “ Zm`1,k ´Wm,kXm`1,k (9b)
E2

k “ Zm`1,k ´ pWm,k ` Um,kqXm`1,k (9c)
2Another expression of the optimal frequency-domain step size has been

recently proposed [7], but it does not differ in essence from (8).

where E1
k and E2

k correspond to the “look-ahead” errors re-
sulting from the weight update for two extreme cases, namely,
a frozen (μm “ 0N ) and a full (μm “ 1N ) update. In order
to consider valid the previous statement (9), the look-ahead
error E2

k must be obtained with the windowless update

Wm`1 “ Wm ` μm ˝ Um (10)

which converges, although somewhat slower than (6) because
the number of parameters nearly doubles (N « 2L). This
way of proceeding, namely, excluding the p-windowing op-
eration in the update, prevents the characteristic and undesired
spectral distortion of a rectangular window operation.3

The aim of this analysis is to obtain a meaningful expres-
sion of the expected power spectrum of each one of the errors
(9). Let Gm,k “ Hk ´ Wm,k be the canceller misalignment,
whereHk is the frequency response of the acoustic echo path,
considered constant during consecutive segments. Given that
the segment length N is usually large, the signals from adja-
cent segments can be thus considered uncorrelated; the power
spectral density (PSD) of error Ek and look-ahead error E1

k

result thus after simplifications in

Ek “ Vm,k ` Gm,kXm,k (11a)
E 1
k “ Vm`1,k ` Gm,kXm`1,k (11b)

where E “ Et|E|2u, V “ Et|V |2u, X “ Et|X |2u, and G “
Et|G|2u. On the other hand, the PSD of the look-ahead error
E2

k happens to result in

E2
k “ Vm`1,k ` e´ 1

2Gm,kXm`1,k ` Xm`1,k

Xm,k
Vm,k (12)

where the last term in (12) corresponds to the weight corrup-
tion caused by the presence of near-end activity. On the pos-
itive side, the canceller mismatch must experience a decrease
by a factor of expp´1{2q in accordance to the following argu-
ment: the fastest convergence of the windowless update (10)
in a noiseless situation (for Vm,k “ 0) follows the rule

Gm`1,k “
ˆ
1 ´ 1

N

Ṁ

Gm,k » e´ 1
2Gm,k (13)

where the last simplification results from the asymptotic limit
for large M , and given that M » N{2.

4. ESTIMATION OF THE OPTIMAL STEP

We can rewrite equations (11) and (12) in the following sys-
tem of linear equations subject to inequality constraints»

—–
1 0 1

0 1 ρk

ρk 1 0.6ρk

fi
ffifl

»
– Vm,k

Vm`1,k

Xm,kGm,k

fi
fl “

»
– Ek

E 1
k

E2
k

fi
fl (14)

subject to Vm,k,Vm`1,k,Gm,k ě 0

3In consequence, we do not need to make use of the following approxi-
mation used in the literature [4–7], Fpp ˝ pF´1qq « p1{2qI.
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where
ρk “ Xm`1,k

Xm,k
. (15)

The condition number of the system matrix in (14) results in
κpρkq « ρk `ρ´1

k `3{2. This condition number is minimum
at ρk “ 1, that is, for Xm`1,k “ Xm,k.4

4.1. Reducing the Parametric Space

Instead of considering Vm,k, Vm`1,k and Gm,k parameters of
the solution equation (14), we assume them to follow a para-
metric autoregressive (AR) model. We thus define the AR
transfer function

Apejωq “
Pÿ

�“0

α� e
´jω� (16)

where α� are the AR coefficients and P is the AR order, to
describe the near-end signal at the mth segment as Vm,k ”
1{|Apwk

N q|2, where wk
N “ exppjk2π{Nq. Note that we will

use interchangeably Ak to denote Apwk
N q. The realization

of the near-end term Vm,k in error Ek and look-ahead error
E2

k are stochastically independent, hence the estimation of
the AR model (16) from each error yields (slightly) different
results: we will thus define the AR model A2pejωq of param-
eters α2

� to account for the near-end signal observed in E2
k ;

obviously, there is no need for an A1pejωq.
Accordingly, we define the AR models Bpejωq, B1pejωq,

B2pejωq of order Q and parameters β�, β1
�, β

2
� to model the

canceller weight mismatch Gm,k in each error respectively.
Finally, we define only one P -order AR model Cpejωq to
model Vm`1,k in both E1

k and E2
k . The use of an AR model

is justified because:

1. many audio signals, and in especial speech, can be
physically described with an autoregressive model,

2. since P,Q Î N , the number of unknowns in the prob-
lem reduces substantially, and

3. as the AR power spectrum is always positive, the con-
straints in (14) are implicitly met.

4.2. Maximum-Likelihood Estimation

We may take error Ek to be a statistically-independent com-
plex (bivariate) Gaussian variable of zero mean and variance
Ek; hence its probability density function (PDF) is

ppEkq “ 1

πEk exp
`´|Ek|2{Ek

˘
ppαq ppβq (17)

where α “ tα0, ¨ ¨ ¨ , αP u, β “ tβ0, ¨ ¨ ¨ , βP u, and ppαq and
ppβq are prior probabilities. The PDF ppαq is defined as

ppαq “ |Jα|1{2
p2πqP {2 exp

`´ 1
2 pα ´ αoqJαpα ´ αoqH˘

(18)

4The system becomes ill-conditioned in the trivial case of Xm,k » 0 or
Xm`1,k » 0, that is, with the lack of training or testing data respectively.

where αo represents the actual (unknown) AR parameters,
set as the average αo “ pα ` α2q{2, and Jα is the Fisher
information matrix (FIM) [10]. According to (14)

Ek “ 1

|Ak|2 ` Xm,k

|Bk|2 . (19)

Likewise we can write

ppE2
kq “ 1

πE2
k

exp
`´|E2

k |2{E2
k

˘
ppα2q ppβ2q (20)

where E2
k can be deduced from (14) as

E2
k “ Xm`1,k

Xm,k

1

|A2
k|2 ` 0.6Xm`1,k

|B2
k |2 ` 1

|Ck|2 . (21)

In consequence, the original problem (14) is revamped as
the maximization (of the logarithm) of the likelihood with re-
spect to α and α2, that is, to solve the following problem

max
α,α2

N´1ÿ
k“0

log ppEkq ` log ppE2
kq. (22)

As Ek and E2
k are probabilistically independent, the joint

likelihood results in the product of each individual likelihood,
hence (22). Problem (22) corresponds to a noise-compensated
AR analysis (NCAR). The ML solution to the NCAR problem
has been studied recently in [9] by the author, proposing a
method capable of nearly attaining the lower estimation vari-
ance [10].

The null of the gradient of the functional with respect to
α and α2 yields the following quasi-Newton method

αpξq
o “ 1

2

`
αpξq ` α2pξq˘

(23a)

αpξ`1q
´
Hpξq

α ` λJpξq
α

¯
“ gpξq

α ` λαpξq
o Jpξq

α (23b)

α2pξ`1q
´
H2pξq

α ` λJpξq
α

¯
“ g2pξq

α ` λαpξq
o Jpξq

α (23c)

where λ is the tradeoff regularization hyper-parameter, and
superscript ξ denotes iteration. The approximate Hessian
Toeplitz matrix Hα is built in its ith diagonal as

h
pξq
α,i “ řN´1

k“0

`
ψ

pξq
k

˘2|Ek|2wki
N (24)

while the ith component of vector gα is given by

g
pξq
α,i “

N´1ÿ
k“0

`
ψ

pξq
k

˘2 ˜
1

|Apξq
k |2 ` Xm,k

|Bpξq
k |2

¸
A

pξq
k wki

N . (25)

Here ψpξq
k is the spectral weight, built as

ψ
pξq
k “

ˇ̌
B

pξq
k

ˇ̌2ˇ̌
B

pξq
k

ˇ̌2 ` Xm,k

ˇ̌
A

pξq
k

ˇ̌2 (26)

Matrix H2
α and g2

α are obtained accordingly. Note that (24)
and (25) correspond to an inverse DFT, and they can be thus
evaluated efficiently. Deriving the likelihood terms required
to estimate Vm`1,k andGm,k is not difficult, and due to space
constraints it is thus left as exercise. The solution upon con-
vergence is used to evaluate directly the optimal weight (8).
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5. SIMULATION RESULTS

The proposed method for near-end-compensated echo can-
cellation was validated on realistic simulated scenarios. The
speech signals used in the experiments, sampled at 16 kHz,
belong to a private database.
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Fig. 1. From top to bottom: near-end signal, echo signal,
residual echo (proposed method), and resulting FD step size
(darker is larger). Frequency axis in kHz, time in seconds.
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Fig. 2. Performance of [7] (top) and proposed method (bot-
tom). Energy level (in dB) of echo (dotted), residual echo in
genius method (dashed), and that of each method (solid).

The impulse response of the acoustic path was simulated
according to a room of moderate dimensions (3meters in each
dimension), aimed to resemble a car chamber;5 the length in
samples of the response is L “ 511, hence N “ 1024. Fig. 1
depicts the near-end signal (which acts as disturbance in the
system identification) and the echo signal. In order to test the
tracking performance, the echo path changes abruptly at time
t “ 2. Three methods were tested in this scenario: the ge-
nius method (the optimal step (8) is obtained with the actual
weight mismatch and near-end signal), the method presented
recently in [7] (the weight mismatch and near-end informa-
tion is obtained by averaging the instantaneous spectra of pre-
vious blocks), and our proposed method (P “ 14, Q “ 4).
The methods count with the same (all zero) initialization.

Fig. 2 shows the average performance over 100 simula-
tions. Each simulation has a different acoustic path (position
of microphone and loudspeaker were randomly positioned in-
side the virtual acoustic chamber). The competitive method
[7] was implicitly designed for stationary environments. In
this realistic scenario, however, that solution yields poor esti-
mation of the optimal weight, suffering from the presence of
the near-end signal (note the deterioration with near-end sig-
nal activity). On the contrary, our proposed method achieves
low residual echo level, as the weights are softly updated
based on the accurate detection of near-end spectral activity.
Its tracking performance is also excellent. This performance
exhibited in all other simulation experiments we conducted.

Fig. 1 further shows the residual echo as well as the FD
step size resulting from the proposed method. The residual
echo manifests steady decrease in amplitude, only becom-
ing significant at time t “ 2 due to the abrupt echo path
change. The method’s ability to detect near-end activity is
remarkable as shown by the white areas in the FD step size,
which faithfully match the presence of the near-end signal. In
summary, the proposed method can be seen as a frequency-
dependent soft DTD. Due to time and space constraints com-
parison against the state of art in hard DTD [2, 3] is planned
for the near future.

6. CONCLUSIONS

The estimation of near-end and residual echo components
is indispensable as much as challenging a task in acoustic
echo cancellation. Such an ill-posed problem (estimating
two terms from a single reference) is approached in this paper
with a “look-ahead” strategy that results in a well-conditioned
scenario involving an extra term to estimate (from three valid
references). Furthermore, the use of autoregressive models
helps reduce the large number of parameters in the problem,
hence improving robustness against overfitting. Results on
realistic simulated scenarios prove the validity of this promis-
ing novel strategy.

5From empirical analysis, the acoustic response (even with random ones)
has no notorious effect in the performance of the method.
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