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ABSTRACT

A commonly used technique to attenuate acoustic echo signals in

hands-free devices is acoustic echo cancellation (AEC). In practice,

the AEC is unable to provide sufficient echo reduction due to system

misalignment, modeling errors and the insufficient length of the es-

timated acoustic echo path. Hence, AEC is usually used in conjunc-

tion with one or more postfilters to suppress the remaining echo. For

the estimation of the postfilter the residual echo is required. In the

past, several approaches have been proposed which estimate the late

residual echo spectral variance using the far-end signal and parame-

ters that are obtained from the estimated echo path. In this work, we

propose a signal-based algorithm to estimate the parameters. Thus,

among other advantages, the postfilter can also be used in combina-

tion with acoustic echo suppression.

Index Terms— Late Residual Echo Estimation, Acoustic Echo

Cancellation, Late Reverberation Estimation

1. INTRODUCTION

In typical hands-free communication scenarios, the desired near-end

speech acquired by the microphone is often distorted by the acoustic

echo of the far-end speech and background noise. As a result, the

quality of speech and its intelligibility are degraded, thus commu-

nication is hindered. The most commonly used technique to reduce

the echo is acoustic echo cancellation (AEC), [1, 2]. In order to do

this, the acoustic echo path is estimated using adaptive filtering algo-

rithms, see for example [3, 4]. Nonetheless, AEC is often unable to

provide enough attenuation and a residual echo remains. The resid-

ual echo is caused by 1) the misalignment between the true and the

estimated echo path, 2) the insufficient length of the estimated echo

path (i.e., the under-modeling of the echo path), and 3) nonlinear

signal components. Hence, one or more postfilters are necessary to

suppress the remaining echo signal.

In this work we focus on the late residual echo (LRE) caused by

the insufficient length of the estimated echo path. Several models

have been proposed to address the problem of LRE suppression, see

for example [5], [6] and [7]. For the postfilter design all of them

employ an estimate of the LRE spectral variance. For instance, in

[5] and [6] a recursive estimator is proposed that makes use of the

far-end echo signal. Both approaches derive the parameters for the

estimator based on the estimated acoustic echo path; we therefore

refer to these as channel-based approaches. In contrast, the authors

in [7] design a filter to suppress the acoustic echo. In this case, the

model parameters are estimated directly from the signals; we refer

to this as a signal-based approach.

*A joint institution of the Friedrich-Alexander-University Erlangen-
Nürnberg (FAU) and Fraunhofer IIS, Germany.

This work is based on the signal model presented by Habets et

al. in [5]. Our goal is to derive the parameters for the estimator from

the available signals in the system instead of from the estimated echo

path. To this end, the signal model is reformulated using the fact that

the late residual echo is the late reverberation of the acoustic echo.

2. PROBLEM FORMULATION

Given a loudspeaker-enclosure-microphone environment the signal

captured by the microphone, y(n), is described by

y(n) = d(n) + s(n) + v(n) = h(n) ∗ x(n) + s(n) + v(n), (1)

where the discrete time index is given by n, h(n) is the acoustic

echo path, x(n) is the far-end speech, s(n) is the near-end speech

and v(n) is the background noise. The goal of the AEC is to obtain

an estimate of the acoustic echo signal d(n) which is denoted by

d̂(n). Yet, due to complexity and convergence constraints, only Ne

coefficients of the acoustic echo path can be estimated. The output

signal of the AEC is obtained by subtracting d̂(n) from y(n). This

signal is referred to as the error signal and can be expressed as

e(n) = y(n)− d̂(n) = em(n) + er(n) + s(n) + v(n), (2)

where em(n) denotes the residual echo due to the misalignment of

the estimated echo path and er(n) denotes the LRE signal, which

is a consequence of the under-modeling of the acoustic echo path.

Using the short time Fourier transform (STFT), we express the error

signal in the time-frequency domain as

E(l, k) = Em(l, k) + Er(l, k) + S(l, k) + V (l, k), (3)

where E(l, k) denotes the STFT of e(n) and l and k are the time and

frequency indexes, respectively. Throughout the paper we assume

that the AEC has converged, such that the term Em(l, k) ≪ Er(l, k)
can be neglected. In practice Em(l, k) can be significantly reduced

by means of a residual echo suppressor such as the one proposed

in [8]. We also assume that no near-end speech is present. The LRE

in the time-frequency domain can be defined as in [5],

Er(l, k) =
∞
∑

i=0

H(i+NRe, k)X(l − i−NRe, k), (4)

where NRe = Ne/R and R is the frame shift for the analysis win-

dow of Nw samples. Taking the same assumptions into account as

in [5], the following approximation for the LRE spectral variance

holds

λer(l, k) ≡ E{|Er(l, k)|2} (5)

≈
∞
∑

i=0

E
{

|H(i+NRe, k)|2
}

E
{

|X(l − i−NRe, k)|2
}

,
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where E{·} is the mathematical expectation operator. The envelope

of the acoustic echo path, E{|H(l, k)|2}, based on the generalized

reverberation model in [9], can be expressed as

E{|H(l, k)|2} ≈ λ̃h(l, k) =

{

cd(k), for l = 0;

cr(k)α
l(k), for l ≥ 1.

(6)

This simplified model does not take the early reflections into ac-

count. Thus, the echo path’s envelope is characterized only by the

direct power, cd(k), the initial reverberant power, cr(k), and the ex-

ponential decay rate, α(k) ∈ [0, 1). The decay rate is related to the

reverberation time, T60(k), by α(k) = e−2ρ(k)R, where

ρ(k) ≡ 3 ln (10)

T60(k)fs
, (7)

and fs is the sampling frequency. In the following, the notation ·̃
highlights that (6) was used to estimate the spectral variances. Con-

sequently, the estimated LRE spectral variance can be expressed as

λ̃er(l, k) =

∞
∑

i=0

cr(k)α
i+NRe(k)λx(l − i−NRe, k), (8)

where λx(l, k) = E{|X(l, k)|2} is the far-end speech spectral vari-

ance. Finally, analogous to [5], (8) can be expressed recursively, i.e.

λ̃er(l, k) = α(k)λ̃er (l−1, k)+cr(k)α
NRe(k)λx(l−NRe, k). (9)

As in [5–7], we can now use a spectral enhancement technique to

reduce the LRE and thereby enhance the near-end speech. To this

end, the estimated LRE spectral variance is used for the estimation

of the postfilter gains. To accomplish this, given (9), we need an

estimate of the parameters cr(k) and α(k). The aim of this work

is to derive an algorithm to estimate these parameters based on the

far-end signal, the microphone signal and the error signal.

3. CHANNEL-BASED PARAMETER ESTIMATION

In this section we recapitulate the estimators for the model parame-

ters given in [5]. This approach is referred to as channel-based as the

model parameters are obtained from the estimated echo path, ĥ(n).

3.1. Estimation of the reverberation time

In [5] the reverberation time, T60(k), is estimated using the energy

decay curve (EDC) [10] of band-pass filtered versions of ĥ(n) [11].

For brevity, we only define the fullband form, i.e.

EDC(m) = 10 log10

{

∑Ne−1
j=m ĥ2(j)

∑Ne−1
j=0 ĥ2(j)

}

; 0 ≤ m ≤ Ne−1. (10)

In order to estimate the reverberation time a straight line is fitted

between two points of the EDC. As in [5], the range between −5 and

−25 dB was used. Between these points, the EDC can be modeled

as EDC(m) = p − q · m, where p is the offset, and the regression

factor q is related to the estimated reverberation time by T̂60 = 60
q·fs

.

3.2. Estimation of the initial power

As in [5], the power of the acoustic echo path’s envelope, c(l, k), can

be defined as

c(l, k) =

∣

∣

∣

∣

∣

Nw−1
∑

j=0

w(j)ĥ(j + lR)e
−i 2πk

NDFT
j

∣

∣

∣

∣

∣

2

, (11)

where i =
√
−1, NDFT denotes the length of the discrete Fourier

transform and w(j) is the STFT analysis window. In terms of the

model in (6), we can define ĉd(k) = c(0, k) and ĉr(k) = c(1, k).

Note that in [5] ĉ(Ne, k) = αNw/R(k)c(NRe−Nw/R, k) was used.

Finally, ĉr(k) is smoothed over the frequency axis in order to avoid

spectral zeros.

4. SIGNAL-BASED PARAMETER ESTIMATION

In this section, the proposed signal-based approach for the estima-

tion of the model parameters in (8) is described. In contrast to the

channel-based approach, our proposal only utilizes the available sig-

nals in the system and not ĥ(n). The optimal model parameters are

obtained by minimizing the cost-function

J(α(k), cr(k)) =

NT−1
∑

l=0

(

λe(l, k)− λ̃er(l, k)
)2

, (12)

where NT is the length of the loudspeaker signal in frames and

λe(l, k) = E{|E(l, k)|2} is the spectral variance of the error signal.

The parameter estimators are derived using two different models for

the LRE spectral variance. While the decay rate is obtained using

a similar model as for the late reverberation estimation in [9], the

initial power is obtained using (8).

4.1. Estimation of the decay rate

Given the signal model in [9], a relationship between the model for

the late reverberation and the LRE estimation, (8), can be derived.

In contrast to [9], it should be noted that in this particular case the

non-reverberated far-end signal x(n) is available. After suppressing

the noise, using for example the proposed method in [12] or in [13],

and in absence of near-end speech, the spectral variance of Y (l, k)
can be expressed, using the models in (6) and (8), as

λ̃y(l, k) =

∞
∑

i=0

λ̃h(i, k)λx(l − i, k) (13a)

= cd(k)λx(l, k) +

∞
∑

i=1

cr(k)α
i(k)λx(l − i, k)

= c∆(k)λx(l, k) +
∞
∑

i=0

cr(k)α
i(k)λx(l − i, k)

= c∆(k)λx(l, k) + α−NRe λ̃er(l +NRe
, k), (13b)

where c∆(k) = cd(k) − cr(k) is the direct-to-reverberant level dif-

ference. Since the microphone-loudspeaker distance is commonly

small, we can assume that c∆(k) ≥ 0. To estimate c∆(k) we pro-

pose to minimize

J(c∆(k)) =

NT+NRe−1
∑

l=NRe

(

λy(l, k)− λ̃y(l, k)
)2

, (14)

where λy(l, k) is the true spectral variance of Y (l, k) and λ̃y(l, k)

is computed using (13b). To do this, we approximate λ̃er(l, k) by

λe(l, k), which is valid when the aforementioned assumptions are

satisfied. Using (13b) and assuming that λ̃y(l, k) ≈ λy(l, k) , we

can now express the estimated LRE spectral variance as

λ̃er(l, k) = αNRe(k)[λy(l −NRe, k)− c∆(k)λx(l −NRe, k)]

= αNRe(k)λ̃′

y(l −NRe, k), (15)
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where λ̃′

y(l, k) is the spectral variance of the microphone signal after

subtracting the estimated excessed direct energy. Finally, the decay

rate α is obtained by substituting (15) into the following logarithmic

cost function

J(ln(α(k))) =

NT−1
∑

l=0

(

ln(λe(l, k))− ln(λ̃er(l, k))
)2

, (16)

and minimizing (16) by setting the partial derivative with respect to

ln(α(k)) to zero. Consequently,

ln(α̂(k)) =

∑NT−1
l=0 (ln(λe(l, k))− ln(λ̃′

y(l −NRe, k)))

NRe ·NT
, (17)

To simplify, the decay rate is assumed to be frequency invariant, i.e.

α̂ = E{α̂(k)}. The main advantage of estimating the decay rate

instead of the reverberation time is the fact that the possible values

of α are limited by and tend towards 1. This is due to the exponen-

tial relation between both parameters. For instance, at a sampling

frequency fs = 16 kHz, the decay rate will be larger than 0.78 for

reverberation times larger than 0.25 s.

4.2. Estimation of the initial reverberant power

The estimator of the initial reverberant power is obtained by substi-

tuting (8) into (12), and setting the partial derivative with respect to

cr(k) to zero. Hence,

ĉr(k) =

∑NT−1
l=0 λe(l, k)

∑NRl−1
i=0 α̂iλx(l − i−NRe, k)

α̂NRe

∑NT−1
l=0

(

∑NRl−1
i=0 α̂iλx(l − i−NRe, k)

)2
,

(18)

where NRl ≫ NRe limits the length of the under-modeled acoustic

echo path, and the estimated decay rate, α̂, was calculated before.

As in Sec. 3.2, it is recommended to smooth ĉr(k) over frequency.

5. ONLINE PARAMETER ESTIMATION

In the previous section, an algorithm for the parameter estimation

was presented which uses the complete signal’s length, i.e., NT

frames. For real-time applications this is not feasable. Hence,

J(α(l, k), cr(l, k)) =
l
∑

l′=l−Nt+1

(

λe(l
′, k)− λ̃er(l

′, k)
)2

(19)

is used, where Nt is the number of frames used to update the estima-

tions. In addition, this algorithm has to be able to track changes in

the environment in a controlled way. Note that the parameters must

not be updated if near-end speech is present, as if this occurs (17)

does not hold. The decision whether to update can be made based

on the output of a double-talk detector as the one proposed in [14].

Yet, a false negative will often lead to outliers. In order to discard

them, an order statistics filter as in [15] is applied. Order statistics

filters, [16, 17], are defined by

aos = arg

{

P (x) = γa : P (x) =

∫ x

0

p(a)da

}

, (20)

where, for example, γa = 0.5 is the definition of the median filter.

The task remains, however, to select the appropriate γa.

It is widely accepted that the decay rate can only be correctly

estimated in periods of free decay, as it tends to be overestimated

otherwise, [15, 18]. However, it is not advisable to track the mini-

mum as this could lead to its underestimation. Hence, γα = 0.1 is a

proper value, which is also the value proposed in [15].

In order to control the update of the initial reverberant power,

cr(k), and of the direct-to-reverberant level difference, c∆(k), a

first-order recursive filter with a forgetting factor η is applied fol-

lowed by an order statistics filter. Empirically, we have found that

η = 0.65, γc(k) = 0.45 and γc∆ = 0.5 give good results.

6. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed signal-

based parameter estimators. First, the proposed approach is com-

pared against the channel-based approach proposed in [5]. Secondly,

an analysis of the convergence of the decay rate estimator and its

influence on the LRE spectral variance estimation is performed. Fi-

nally, the performance of the online parameter estimation algorithm

under adverse conditions will also be analyzed. For the accuracy as-

sessment of the estimated LRE spectral variance, the log-error dis-

tortion as described in [19] is used. Using this measure allows us to

obtain not only the over- and underestimation of the obtained LRE

spectral variance, but also the distribution of these errors. The over-

all log-error distortion is defined by

LogErrov =
10

KL

L−1
∑

l=0

K−1
∑

k=0

∣

∣

∣

∣

∣

min

(

0, log10
λ̂er(l, k)

λ̃er(l, k)

)
∣

∣

∣

∣

∣

; (21)

LogErrun =
10

KL

L−1
∑

l=0

K−1
∑

k=0

max

(

0, log10

λ̂er(l, k)

λ̃er(l, k)

)

; (22)

LogErr = LogErrov + LogErrun. (23)

where λ̂er(l, k) is an estimate of the true LRE spectral variance

E{|Er(l, k)|2} that is obtained using

λ̂er(l, k) = ηerλ̂er(l − 1, k) + (1− ηer)|Er(l, k)|2, (24)

for which the forgetting factor ηer = exp( −R
fs·0.012

) is known to give

good results, [5].

All simulations were conducted at a sampling frequency fs =
16 kHz. The room impulse responses (RIR), of length N = 4096
taps, were generated for a 5m×4m×3m (length×width×height)

room using the image method, [20]. The distance between the

loudspeaker and the microphone was set to 1.4 m. During the simu-

lations, three RIRs with reverberation times 0.25 s, 035 s and 0.45 s

were used. An echo canceler of length Ne = 2048 taps canceled the

early echo perfectly and no background noise was present. The time

domain signals were transformed to the STFT domain using a 256
points Hamming window. The overlap between successive STFT

frames was set to 75% resulting in a frame shift of R = 64 samples.

The order statistics filters were applied on 100 estimates.

6.1. Results

First, the log-error distortion caused by the channel-based and the

signal-based approach is compared. For this, a RIR with a rever-

beration time T60 = 0.35 s was used. The channel-based model

parameters were estimated from the first Ne taps of the actual RIR.

The signal-based parameters were estimated as described in Sec. 4.

Table 1 shows a comparison of the overall log-error distortion.

LogErrorov LogErrorun LogError
channel-based 2.6856 dB 0.4337 dB 3.1193 dB

signal-based 2.2510 dB 0.4894 dB 2.7415 dB

Table 1: Overall log-error distortion analysis
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Fig. 1: Log-error distortion distribution analysis

Table 1 shows that the proposed algorithm causes less log-error

distortion. Moreover, the overestimation is considerably reduced

while the underestimation is only moderately increased. This is illus-

trated in more detail in Figs. 1a and 1b, which show that the overes-

timation caused by the signal-based approach is distributed towards

lower values as for the channel-based approach. Hence, using the

signal-based estimated LRE spectral variance for the postfilter de-

sign will cause less near-end speech distortion, as the postfilter will

be less aggressive.

Secondly, the convergence and the ability to track changes in the

environment of the proposed online algorithm were tested. To this

end, the reverberation time was first set to 0.35 s, then modified to

0.25 s and finally set to 0.45 s and the parameters were updated every

frame. Thus, both the ability to track the decrease and the increase

of the decay rate were tested. Fig. 2a depicts the estimated decay

rate compared to the true decay rate of the acoustic echo path over

time. Figs. 2b and 2c compare the true LRE spectral variance and

its estimation.
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Fig. 2: Convergence of the online parameter estimation algorithm

These figures show that the algorithm converges rapidly to the

right solution. In addition, it is also capable of tracking changes

in the environment. Nonetheless, due to the order statistics filter,

it is more efficient in tracking the decrease of the decay rate as its

increase. The total log-error distortion is 3.1241 dB, from which

frame

fr
e
q
u
e
n
c
y
 [
k
H

z
]

 

 

0 2000 4000 6000
0

2

4

6

8

−70

−60

−50

−40

−30

−20

−10

(a) λ̂e(l, k)

frame

fr
e
q
u
e
n
c
y
 [
k
H

z
]

 

 

0 2000 4000 6000
0

2

4

6

8

−70

−60

−50

−40

−30

−20

−10

(b) λ̃er(l, k)

Fig. 3: LRE estimation in presence of near-end speech

1.9105 dB correspond to overestimation and 1.2135 dB correspond

to underestimation.

Finally, the robustness of the proposed algorithm in presence of

near-end speech and in double-talk situations was tested. Hence, the

error signal after the AEC contains both the near-end speech and

the LRE. The online parameter estimation algorithm along with a

double-talk detector, similar to the one proposed in [14], was used.

The RIR had a reverberation time T60 = 0.35 s. The spectral vari-

ance of the error signal is depicted in Fig. 3a and the estimated LRE

spectral variance is depicted in Fig. 3b. For brevity we do not in-

clude a figure depicting the true LRE. It can be observed that the

proposed online estimators need some time to converge. Yet, after

they have converged, the estimated LRE spectral variance contains

nearly no traces of the near-end speech. To prove the accuracy of

the proposed method, Table 2 summarizes the overall log-error dis-

tortion introduced by both the channel-based and the signal-based

approaches.

LogErrorov LogErrorun LogError
channel-based 2.5635 dB 0.4712 dB 3.0348 dB

signal-based 1.0073 dB 1.5220 dB 2.5292 dB

Table 2: Overall log-error distortion analysis

It can be concluded that the signal-based approach tends, even

in adverse conditions, to introduce less overestimation, which is of

advantage as the postfilter will cause less distortion to the near-end

speech. Moreover, the difference in underestimation might be in-

audible because the remaining LRE is likely to be masked by the

near-end speech.

7. CONCLUSIONS

A signal-based parameter estimation approach for the LRE spectral

variance estimator proposed in [5] has been presented. The proposed

approach is able to function without having prior knowledge of the

estimated acoustic echo path. In addition, an online update and con-

trol algorithm for the estimators was provided. The online algorithm

allows for fast convergence to the right solution and it is also robust

when using a real double-talk detector. The performance evalua-

tion shows that the resulting LRE spectral variance presents a lower

log-error distortion compared to the channel-based approach. The

estimated LRE spectral variance can be used in the context of LRE

suppression for the estimation of the postfilter gains.The postfiler can

be used in conjunction with AEC and/or acoustic echo suppression.

It must be noted that the log-error distortion due to overestimation

is considerably reduced, which will lead to less near-end speech dis-

tortion caused by the LRE suppressor. Further research will include

the analysis of the proposed approach in combination with adaptive

AEC and in presence of background noise.
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