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ABSTRACT

In this paper, we propose a novel acoustic-echo-reduction tech-

nique at a time-frequency domain, which is optimally combined

with speech enhancement. Unlike conventional echo reduction

techniques which minimizes only residual power of the far-end

acoustic echo signal, the proposed method minimizes summation of

the residual echo signal and distortion of the near-end speech sig-

nal from a minimum mean square error (MMSE) perspective. The

proposed method performs echo reduction with speech enhance-

ment and parameter optimization in an iterative manner based on

the expectation-maximization (EM) algorithm. The E step is corre-

sponding with the echo reduction and speech enhancement based on

the Kalman smoother with a time-varying covariance matrix for the

observation noise term, which reflects the time-varying characteris-

tics of speech sources. By using the time-varying covariance matrix,

we can enhance speech sources effectively with acoustic echo re-

duction. Associated with the time-varying covariance matrix, a

new optimization scheme of parameters for the M step is derived in

this paper. Experimental results with impulse responses which was

recorded under a real meeting room show that the proposed method

can effectively enhance a near-end speech signal when there are a

near-end speech signal and a far-end acoustic echo signal.

Index Terms— Time-varying assumption, acoustic echo reduc-

tion, EM algorithm

1. INTRODUCTION

Acoustic echo reduction techniques have been studied for a long

time so as to avoid acoustic feedback in remote conference systems.

Conventionally, there are many acoustic echo reduction techniques

based on least square algorithms such as Normalized Least Mean

Squares (NLMS) [1]. These techniques utilize a finite impulse re-

sponse (FIR) filter for echo reduction which is optimized so as to

minimize the averaged power of the residual signal after echo reduc-

tion. From a probabilistic perspective, minimization of the averaged

power w.r.t the FIR filter is equivalent with maximum likelihood es-

timation of the FIR filter under the assumption that the probability

density function (PDF) of the residual signal after filtering is a time-

invariant Gaussian distribution. The time-invariant assumption for

the PDF of the residual signal is reasonable when there is only back-

ground noise signal in the residual signal. However, in general there

are both a near-end speech signal and the background noise signal in

the residual signal, and the time-invariant assumption for the PDF of

the near-end speech signal is not adequate, because speech signals

are non-stationary signals. From a different perspective, the con-

ventional least square algorithms focus on only echo reduction, and

speech enhancement performance is under the sufficient level for re-

mote conference systems.

In this paper, we propose a novel echo reduction technique

which is an extension of a conventional single channel acoustic echo

canceller with the Kalman filtering at the time-domain [2]. The pro-

posed method extends the conventional method into a multichannel

acoustic echo reduction technique at a time-frequency domain. By

using multichannel microphone input signal, a multichannel beam-

forming technique can be integrated with acoustic echo reduction.

In addition to the multichannel extension, the proposed method ef-

fectively integrate the time-varying assumption of speech sources

with echo reduction by using a time-varying covariance matrix for

the observation noise term in the observation equation. The time-

varying covariance matrix model in the observation noise term is

recently proposed local Gaussian modeling [3]. For parameter opti-

mization, the proposed method utilizes a expectation-maximization

(EM) based optimization scheme. The E step is corresponding with

the Kalman smoother. We derive a novel parameter optimization

scheme for the Kalman smoother with a time-varying covariance

matrix for the observation noise term. By using the sufficient statis-

tics that is estimated by the Kalman smoother, the parameters are

updated so as to increase the Q function in the M step. In this paper,

the proposed method is formulated as an offline echo reduction tech-

nique. However, by using an online EM method based parameter

optimization scheme for local Gaussian modeling [4], the proposed

method can be extended into an online echo reduction technique.

The proposed method is evaluated by two scenarios, a syn-

chronization case of an A/D converter and a D/A converter and

an asynchronous case. Evaluation results show that the proposed

method can more effectively reduce acoustic echo than the conven-

tional method. even when the A/D converter and the D/A converter

are not synchronized with each other.

2. PROBLEM STATEMENT

2.1. Input signal model

In this paper, acoustic echo reduction is performed at a time-

frequency domain by using shor-term Fourier transform. The mi-

crophone input signal at the time-frequency domain is expressed as

follows:

x(l, k) =

Ns
X

n=1

cn(l, k) +

Ld−1
X

l′=0

hl′(l, k)d(l− l
′
, k) + w(l, k), (1)

where l is the frame index, k is the frequency index, Ns is the

number of the sources, cn(l, k) is the nth source signal, Ld is the

tap-length of an acoustic impulse response at the time-frequency

domain, hl′(l, k) is the l′th tap of the acoustic impulse response

at each time-frequency point, and w(l, k) is a multichannel back-

ground noise signal. d(l, k) is the far-end speech signal at each
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time-frequency point. The acoustic impulse response is modeled as

a gradually time-varying variable as follows:

hl′(l, k) = hl′(l − 1, k) + el′(l, k), (2)

where el′(l, k) is the amount of change of the acoustic impulse re-

sponse. In the teleconferencing systems, d(l, k) is known in ad-

vance, because the far-end speech signal is transferred from a remote

site. In this paper, the goal of the echo reduction is set to extraction

of
PNs

n=1
cn(l, k) in (1) from the microphone input signal x(l, k)

and the far-end speech signal d(l, k).

2.2. State-space model

Similar to the conventional single channel echo reduction technique

with a Kalman-filtering technique [2], we derive a Kalman-smoother

based acoustic echo reduction technique by modifying the original

microphone input model (1) into a state-space model and an observa-

tion model. On contrary to the conventional single channel method,

the proposed method utilizes a multichannel input model. Multi-

channel microphone input signal model defined by (1) can be modi-

fied into a following equation:

x(l, k) = D(l, k)H(l, k) + G(l, k), (3)

where

D(l, k) =

"

d(l, k)INm×Nm
d(l − 1, k)INm×Nm

. . .

d(l − Ld + 1, k)INm×Nm

#

. (4)

INm×Nm
is set to a Nm × Nm identity matrix. The impulse

response is summarized as follows:

H(l, k) = [ h0(l, k)T h1(l, k)T . . . hLd−1(l, k)T ]T ,

(5)

where T is a transpose operator of a matrix/vector. G(l, k) is set

to summation of a near-end speech signal and a background noise

signal as follows:

G(l, k) =

Ns
X

n=1

cn(l, k) + w(l, k). (6)

(3) can be regarded as an observation equation of Kalman filter [5].

H(l, k) can be expressed as a following state-transition equation:

H(l, k) = H(l − 1, k) + E(l, k), (7)

where

E(l, k) = [ e0(l, k)T e1(l, k)T . . . eLd−1(l, k)T ]T . (8)

3. PROPOSED METHOD

3.1. Probabilistic modeling

In the proposed method, all of the variables in the state-transition

equation and the observation equation are modeled as time-varying

or time-invariant Gaussian distributions.

3.1.1. Probabilistic model for near-end speech signals

Similar to [3], the PDF of the near-end speech signal cn(l, k) is

modeled as a time-varying Gaussian distribution as follows:

p(cn(l, k)) = N (cn(l, k);0, vn(l, k)Rn(k)), (9)

where vn(l, k) is a time-varying scalar coefficient of the nth speech

source, Rn(k) is the time-invariant covariance matrix of the acoustic

transfer function of the nth speech source.

3.1.2. Probabilistic model for background noise signal

The background noise signal is modeled as a stationary Gaussian

distribution as follows:

w(l, k) = N (w(l, k);0, Rw(k)), (10)

where Rw(k) is modeled as a time-invariant covariance matrix of

the background noise signal.

3.1.3. Probabilistic model for state-transition noise

The state-transition noise term E(l, k) is modeled as the following

time-invariant Gaussian distribution:

p(E(l, k)) = N (E(l, k);0, σ(k)INm×Nm
), (11)

where σ(k) is the amount of change of the acoustic impulse response

at each time-frequency point.

3.2. Sufficient statistics estimation

Acoustic echo reduction with speech enhancement and parameter

optimization are performed in an iterative manner based on the EM

algorithm [6]. The E step is corresponding with sufficient statistics

of probabilistic variables. Under the derived state-space model and

the derived observation model, at first, the proposed method esti-

mates the sufficient statistics of the probabilistic variables. By using

the estimated sufficient statistics, the proposed method updates the

parameters so as to increase the likelihood function.

3.2.1. Sufficient statistics for acoustic impulse response

The Kalman smoother is utilized for estimation of the latent vari-

ables H(l, k). The sufficient statistics are

Hl|LT ,k = E[H(l, k)|X (k),D(k)], (12)

Rl|LT ,k = E[(H(l, k) − Hl|LT ,k)

× (H(l, k) − Hl|LT ,k)H |X (k),D(k)], (13)

Rl,l−1|LT ,k = E[(H(l, k) − Hl|LT ,k)

× (H(l − 1, k) − Hl−1|LT ,k)H |X (k),D(k)],

(14)

where H is the Hermite transpose of a matrix/vector, E is the opera-

tor for the expected value calculation, ´l|LT ,k = E[´(l, k)|X (k),D(k)],
LT is the number of the frames, X (k) = {x(1, k), . . . , x(LT , k)},

and D(k) = {d(1, k), . . . , d(LT , k)}. At first, the Kalman filtering

[5] is utilized as follows:

Prediction

Hl|l−1,k = Hl−1|l−1,k (15)

Kalman filtering

Hl|l,k = Hl|l−1,k + K(l, k)
“

x(l, k) − D(l, k)Hl|l−1,k

”

, (16)
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where K(l, k) is a Kalman gain, which is calculated as follows:

K(l, k) = Rl|l−1,kD(l, k)H
Rx(l, k)−1

, (17)

Rl|l−1,k = Rl−1|l−1,k + Rv(k) (18)

Rx(l, k) = RW (l, k) + D(l, k)Rl|l−1,kD(l, k)H
(19)

RW (l, k) is summation of a covariance matrix of a near-end speaker

and a covariance matrix of a background noise, which calculated as

follows:

RW (l, k) =

Ns
X

n=1

vn(l, k)Rn(k) + Rw(k) (20)

Expected value of square error of H at the lth frame is calculated as

follows:

Rl|l,k =
“

I − K(l, k)D(l, k)
”

Rl|l−1,k. (21)

Next, the MMSE estimate at the lth frame and the MSE is calculated

by using Kalman smoother [7].

3.2.2. Sufficient statistics for parameters of near-end speech source

and background noise

The sufficient statistics for the near-end speech source cn(l, k) and

the background noise signal w(l, k) are the minimum mean square

error (MMSE) estimates and the mean square error (MSE) matrices.

These statistics are estimated by using Hl|LT ,k and Rl|LT ,k which

is estimated by the Kalman smoother as follows.

ĉn,l|LT ,k =

Z

cn(l, k)p(cn(l, k)|X (k),D(k))dcn(l, k)

(22)

= An,l,k

“

x(l, k) − D(l, k)Hl|LT ,k

”

, (23)

where An,l,k = vn(l, k)Rn(k)RW (l, k)−1 is a multichannel

Wiener filter which extracts cn(l, k) in the microphone input sig-

nal x(l, k). The MSE matrix of the nth near-end speech signal is

obtained as follows:

Rcn,l|LT ,k =

Z

cn(l, k)cn(l, k)H

×p(cn(l, k)|X (k),D(k))dcn(l, k)

−ĉn,l|LT ,kĉ
H
n,l|LT ,k

= An,l,kQl,k|1...LT
A

H
n,l,k

+(I − An,l,k)vn(l, k)Rn(k), (24)

where

Ql,k|1...LT
= x(l, k)x(l, k)H − D(l, k)Hl|LT

x(l, k)H

−x(l, k)H
H
l|LT

D(l, k)H + D(l, k)Pl,kD(l, k)H
,

(25)

Pl,k = Rl|LT ,k + Hl|LT ,kH
H
l|LT ,k. (26)

Similar to the near-end speech source case, the MMSE estimate

and the MSE matrix of the background noise signal are estimated as

follows:

ŵl|LT ,k = Bl,k

“

x(l, k) − D(l, k)Hl|LT ,k

”

, (27)

Rw,l|LT ,k = Bl,kQl,k|1...LT
B

H
l,k + (I − Bl,k)Rw(k). (28)

where Bl,k = Rw(k)RW (l, k)−1 is a multichannel Wiener filter

which extracts w(l, k) in the microphone input signal x(l, k).

3.3. Parameter optimization (M step)

In the M step, the proposed method estimates the parameters so as to

increase the Q function. By using estimated sufficient statistics in the

E step, the parameters are updated so as to increase the Q function

as follows:

vn(l, k) =
1

Nm

trace
n

Rn(k)−1
Rcn,l|LT ,k

o

, (29)

Rn(k) =
1

LT

LT
X

l=1

Rcn,l|LT ,k

vn(l, k)
, (30)

Rw(k) =
1

LT

LT
X

l=1

Rw,l|LT ,k, (31)

σ(k) =
1

Nm(LT − 1)
tr

(

LT
X

l=2

“

Pl,k−P
H
l,l−1,k−Pl,l−1,k+Pl−1,k

”

)

,

(32)

where Pl,l−1,k = Rl,l−1|LT ,k + Hl|LT ,kHH
l−1|LT ,k and tr is the

operator that returns the trace value of a matrix/vector.

4. EXPERIMENT

4.1. Experimental condition

The experimental environment and the microphone array alignment

are shown in Fig. 1. The impulse responses for a near-end speech

signal were measured at the Location 1, 2, and 3 by using the TSP

(Time-Stretched Pulse) method [8]. The near-end speech is gener-
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Fig. 1. Experimental environment and microphone array alignment

ated by convoluting the measured impulse responses with the origi-

nal source signal. The far-end speech signal and background noise

were recording by using the same microphone array that was utilized

for measuring the impulse responses of the near-end speech signal.

At the first experiment, we evaluated echo reduction and speech en-

hancement performance when an A/D converter and a D/A converter

are synchronized (Time-invariant echo-path case). Generally speak-

ing, in the teleconferencing scene in large rooms, an A/D converter
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and a D/A converter are not always synchronized. In the second ex-

periment, we evaluate the acoustic echo reduction performance when

an A/D converter and a D/A converter are not synchronized. The

far-end speech is played by using the D/A converter attached with

the personal computer. Recording of the microphone input signal

is performed by using the A/D converter which is not synchronized

with the D/A converter (Time-varying echo-path case). The original

source signals of the near-end speech signals and the far-end speech

signals are extracted from the TIMIT database [9]. The number of

the near-end speech signals and the number of the far-end speech

signals are 34 each. The other experimental conditions are shown in

Table. 1.

Table 1. Experimental conditions

Sampling rate 16000 [Hz]

Frame size 1024 [pt]

Frame shift 256 [pt]

Number of microphones Nm 3

Ld 8 [tap]

Number of EM iterations 10

Ns 1

Signal to Noise ratio (SNR) between the near-end speech and sum-

mation of the recorded far-end speech and the background noise sig-

nal was set to 0 dB. The evaluation measure is PESQ [11].

The following 3 methods based on the proposed method are

comparatively evaluated.

1. INVARIANT: The time-invariant value vn(l, k) is set to 1.

The background noise reduction is not performed, Rw(l, k) =
0.

2. VARIANT: The variance of the near-end speech is set to a

time-varying value. The background noise reduction is not

performed, Rw(l, k) = 0.

3. VARIANT+NC:The variance of the near-end speech is set to

a time-varying value. The background noise reduction is per-

formed.

4.2. Experimental results

4.2.1. Time-invariant echo-path case

Experimental results when the A/D converter and the D/A con-

verter are synchronized are shown in Fig. 2 for each location.

VARIANT+NC achieved the best performance at each location.

VARIANT+NC and VARIANT achieved higher PESQ than IN-

VARIANT, which means that the proposed time-varying model for

the observation noise term is effective. Evaluation results for PESQ

are shown in Fig. 2.

4.2.2. Time-varying echo-path case

Experimental results for PESQ when the A/D converter and the D/A

converter are not synchronized are shown in Fig. 3 for each location.

VARIANT+NC achieved the best performance. VARIANT+NC

higher PESQ than VARIANT by 0.06 pt. The proposed method is

shown to be effective even when the A/D converter and the D/A con-

verter are not synchronized. In addition to tracking to the echo-path

change, the proposed method can separate the far-end speech signal

and the near-end speech signal spatially with multiple microphones.
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Fig. 2. Evaluation results of PESQ when A/D converter and D/A

converter are synchronized
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Fig. 3. Experimental results for PESQ: SNR is set to 0 dB.

5. CONCLUSION

We proposed a frequency domain echo reduction technique which is

based on the Kalman smoother with time-varying characteristics of

the near-end speech signal. The experimental results show that the

proposed method can reduce acoustic echo and background noise

signal effectively under noisy environments.

6. RELATION TO PRIOR WORK

Conventionally, authors proposed a probabilistic optimization ap-

proach of an echo reduction technique and a source separation tech-

nique [12] with time-varying assumption of speech sources. How-

ever, this approach assume that PDF of the far-end echo path is a sta-

tionary Gaussian distribution. When the far-end echo path gradually

changes, the PDF of the far-end echo path also gradually changes,

e.g., asynchronous cases for a A/D converter and a D/A converter

case. In this case, echo reduction technique of the conventional

method degrades. However, the proposed method tracks more ac-

curately the change of the echo-path under the assumption that the

echo-path gradually changes.
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