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ABSTRACT

One of the challenges in using intra-cortical recordings like Local
Field Potentials for Brain Computer Interface (BCI) is their inherent
day-to-day variability and non-stationarity caused by subject moti-
vation and learning. Practical Brain Computer Interfaces need to
overcome these variations, as models trained on characteristic fea-
tures from one day fail to represent new characteristics of another.
This paper proposes a novel adaptive model that adjusts to signal
variation by appending new features to the existing model and with-
out knowledge of actual hand kinetics in an unsupervised way. With
this adapting model we investigated the effects of learning and model
adaptation on BCI performance. Using this new model we dramat-
ically improve on all previously published long term decoding and
show that target direction is accurately decoded in 95% of the trials
over two weeks and in 85% of the trials in varying environments.
Since the model needs no separate re-calibration, it can reduce user
frustration and improve BCI experience.

Index Terms— Brain Computer Interface; Local Field Poten-
tials; Adaptive Decoder

1. INTRODUCTION

Brain Computer Interfaces (BCI) decode behavioral signals like
movement and imagination from neural data. A practical BCI re-
quires an acquisition modality with high SNR; faithful reproduction
of neural features, and optimal algorithms to translate the features to
behavioral commands; and shorter training sessions [1, 2]. Advances
in neural engineering and recording techniques extend the chronic
recording envelope to multiple months. Recent studies recorded
single unit activity (SUA) faithfully over 300 to 500 days in mon-
keys and local field potentials (LFP) over 1000 days in a tetraplegia
patient [3, 4]. However, variations in subject motivation, behavior,
and learning cause long-term non-stationarity and signal variability
in these intra-cortical recordings [5]. While daily retraining and
calibration can tackle the variability over time, such pauses increase
user frustration and reduce the usability of BCI [1]. Other papers
develop robust features to overcome the signal non-stationarity [6];
or look for patterns that recur consistently over time [7]. However
these approaches fail to capture the long-term variability of the sig-
nals and as such do not adapt to any neuronal changes especially
in varying environments. Recently, an adaptive closed-loop BCI
successfully decoded arm movement over 1 year [8]. A closed-loop
BCI allows subjects to learn and adapt to the decoding model and
modulate the neural signals to suit the decoder [9, 10]. In this paper
we propose a novel adaptive open-loop system that improves de-
coding; relieves the learning load from the user [11]; and advances
the understanding of the learning mechanism. For this purpose, we
decoded eight targets from neural data recorded from two monkeys
on multiple days while they performed center-out reach tasks.

Kernel based methods are a class of supervised learning tech-
niques that provide good approximations of targets by measuring the
similarity between corresponding input vectors and a basis. Rele-
vance Vector Machines (RVM) are such kernel based models trained
in a Bayesian framework and provide probabilistic predictions of
targets [12]. Their success arises from the sparse formulation to
generalize training data as they work on the premise that only a
few ’relevant’ vectors describe most of the input space [12]. These
methods require that the feature space is stationary and their per-
formance deteriorates when the ’relevant’ vectors can partially (or
cannot) describe new instances of test input space. Such cases re-
quire model adaptation to include the new samples and their charac-
teristics. While retraining the entire model is an option, it requires
more computation and memory to store entire training data. This is
not preferred in applications like Brain Computer Interfaces (BCI),
where pausing for such an update increases user frustration [1]. This
paper offers a solution in the form of an adaptive model that appends
the existing model to generalize the recently observed samples.

The proposed model decodes target direction from LFP recorded
from monkey brain by estimating the hand position and providing
continuous decoding. Such an analysis is better suited than discrete
target direction decoding, since it provides continuous control of
more than one dimensions and generalizes well to novel targets [13].
Most regression techniques assume a single dimensional target vec-
tor and prescribe separate independent regressions to estimate each
dimension in a multi-dimensional target. However, correlations (es-
pecially non-linear) in target dimensions result in spurious estimates
of at least one dimension. To avoid this we propose to use the ker-
nel dependency estimation (KDE) framework, which employs ker-
nel functions to measure the similarity between target dimensions
and a target basis, and encodes prior information about the targets in
an elegant way [14]. Using the KDE framework the proposed model
builds redundant RVM regressors to estimate multiple dimension tar-
get simultaneously and accurately.

The main contributions of this study are: 1. To imitate a practical
BCI with minimal retraining; 2. Understand the long-term learning;
and 3. Track changes in the motor cortex during learning. In our
analysis we train baseline decoders on a single training session and
adapt it to monitor the effects of learning. We overcome data vari-
ability by updating the decoder to track expected trajectories that
trace a straight line from the center to the target and without prior
knowledge of actual trajectories - mimicing a practical BCI. This
paper proposes a novel decoder that learns and adapts to long-term
variations of neural signals providing robust and consistent target
decoding over two weeks and also in sessions with varying external
forces against movement. Developing such an adaptive model also
enables us to use the BCI system as a study tool to understand the
dynamics of learning [15].

The rest of the paper is organized in the following way: Section
2 summarizes the neural and behavioral data; Section 3 discusses
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the method and algorithms used for decoding; Section 4 discusses
the results obtained by the method and Section 5 provides some con-
cluding remarks and suggests related future work.

2. DATA

Two male rhesus monkey subjects (Macaca mulatta), H564 and
H464, weighing 6.1 kg and 4.5 kg respectively, both left handed,
were trained in an instructed-delay center-out task to perform a
point-to-point movement to visually displayed targets using a ma-
nipulandum. LFP was recorded from two silicon-based electrode
arrays (Cyberkinetics, Foxboro, MA) implanted in the contralateral
arm areas of primary motor (M1) and dorsal premotor (PMd) cor-
tices respectively. All the behavioral data (position, velocity, forces,
and torques) and event markers were also collected. Once the mon-
key got familiar with the center-out tasks, external forces against
the direction of movement were applied in some sessions viz. Stiff
Clock-wise (SCW), Viscous Clock-wise (VCW) and Viscous Coun-
terclockwise (VCCW). During our initial analysis, we observed that
band-pass filtering the signal in the δ - band (0.4 - 4Hz) obtained the
best decoding result. Hence, we calculate qualitative features in the
form of instantaneous inter-channel power ranks on the data filtered
in this band [16].

3. METHODS

The proposed algorithm uses redundant non-linear regression mod-
els to obtain hand trajectories and decode movement direction. The
proposed adaptation needs little feedback on the actual movement as
it uses a straight line to approximate the intended trajectory. This
section briefly discusses the initial training and adaptation methods
to obtain the trajectory estimates.

3.1. Relevance Vector Machine

Consider a training data {Xi, ti}where Xi is the neural feature vec-
tor and ti is the corresponding target. As mentioned above, RVM is
a set of general models of the form in eq 1

t(X) =
∑

wiΦ(X,Yi) + w0 (1)

where Yi are the chosen basis vectors and wi are the corresponding
weights and Φ(.) is suitable a kernel function. Usually, the chosen
basis vectors Yi are a set of prototypical examples from the input
training vectors. Maximum likelihood estimation of w without any
constraints leads to over-fitting on the training set and to a general-
ized model requires a sparse w [12]. The RVM framework obtains
generalization via sparse formulation under the assumption that w
is derived from a zero mean Gaussian distribution. The search for
the ’relevant’ vectors leads to the best subset of input feature vec-
tors that can represent the input space. RVM introduces a new set of
hyperparameters α to set a Gaussian prior of the form

p(w/α) =
∏
N (wi/0, α

−1
i )

w is estimated in an iterative fashion to optimize the marginal like-
lihood over α [17]. In this paper, we choose Gaussian radial basis
functions with basis width σ of the form:

Φ(X,Xb) = exp(−||X−Xb||22
σ2

) (2)

The basis width provides a handle on the support of a given basis
vector. The model can be described by the kernel function parame-
ters, basis vectors and the corresponding w asM := {Φ(.),X,w}.

Fig. 1. Actual (t, dashed blue), and the used intended movement (t̃,
solid red) of example trials overlaid on a 10cm × 10cm workspace.

3.2. Adaptation

To obtain the estimates for the new test samples Xnew, the model
M can be applied as

ŷnew =
∑

wT
b Φ(Xnew,Xb) (3)

This initial model provides good generalization if the basis vectors
can express the entire input space. Since the neural recordings and
their features change due to learning and other environmental con-
ditions, they will deviate from the constructed model. In a typical
BCI, the new neural features tend to misalign with the existing basis
vectors Xb, warranting model updates to adapt to new data.

If the target ynew corresponding to Xnew were available, adap-
tation only requires a corrective action that provides a good estimate
for the residual trajectory:

e = ynew − ŷnew

wu : min ||e−wT
u Φ(Xnew,Xnew)||+ λ||Φ(Xb,Xnew)|| (4)
Mu := {Φ(.),Xnew,wu}

The first part of equation 4 can be estimated using the RVM learn-
ing algorithm with similar constraints shown above in section 3.1.
The constraint on the included basis ensures that the baseline model
remains unaffected with the update (wb needs no update). In the ab-
sence of such a constraint, the fit on the training data would suffer
due to the addition of new basis.

Our key innovation is to mimic a practical BCI and without a
prior knowledge of the actual hand trajectories ynew. Therefore,
we approximate ynew by incorporating general principles of natural
movements under the assumption that the monkey intends to reach
the target in a straight line. Thus, we construct an intended trajectory
as ỹ = F(θ̂) as shown in Figure 1. The overall model used for the
succeeding trials will beM∗ = M0 ⊕Mu, where ⊕ is a suitable
appending function and M0 = {Φ(.),X0,w0} is model before
the update. Since the current model structure is linear in the kernel
function space we can obtain the updated model as follows:

M∗ = {w0 ∪wu,Φ(.),X0 ∪Xu} (5)
ŷ∗(X∗) =

∑
wT

0 Φ(X∗,X0) +
∑

wT
u Φ(X∗,Xu) (6)

This approach eliminates the need for a daily calibration session and
can perfrom online updates without interrupting the user.
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3.3. Multiple-output regression

The approach in this paper decodes the target direction by estimating
the hand trajectory and then computing the angle of the trajectory. It
estimates multiple trajectory parameters like x-position, y-position
and absolute movement towards target. We observed that the esti-
mated absolute position (direction independent) correlated well with
the actual value (>0.92) than the independent estimates of x- and
y- positions. In general, the modelM learned in the RVM frame-
work predicts a single dimensional output. One approach recom-
mends a different independent model for each dimension of target
vector. While such models provide a good correlation of individ-
ual dimensions when they are independent, provide spurious results
when dependence exists. The technique proposed here is based on
Kernel Dependence Estimation (KDE) to take advantage of such de-
pendence and obtain a better overall performance [14]. The tech-
nique uses a kernel function to reflect the non-linear dependence of
the target dimensions. Each basis vector of this kernel represents a
unique point in the target space as shown by eq (7) below:

Ψ(y,yi) = exp(−(y − yi)Σ
−1
y (y − yi)

T ) (7)

The above equation is a Gaussian kernel with a spatial covariance
Σy evaluated at each point on the target space, where yi denotes
the hand movement space in the form of its horizontal, vertical and
absolute positions :{yx, yy, yr}, and yr =

√
(y2x + y2y). Such a

representation allows decomposing the obtained basis into its inde-
pendent singular vectors, and approximating them individually in an
RVM framework as shown in the algorithm. This results in multiple
redundant approximations and provides high correlation in all the
target dimensions. The next section discusses the results obtained
during our analysis.

4. RESULTS AND DISCUSSION

To understand the long term decoding and movement tracking capa-
bilities of the decoder, we train an initial model on the first session
and evaluate the model adaptation on successive sessions. The per-
formance is evaluated in terms of decoding accuracy: fraction of
trials that the model accurately predicted the intended direction of
movement. Note that the subjects performed the task in an open
loop and could not actively learn the model. The model is adapted to
account for the varying signal characteristics after decoding 25 tri-
als and selecting only successfully predicted trials. One could also

Fig. 2. Cumulative decoding accuracy with and without adaptation
across multiple adaptation blocks of 25 trials each. The gaps in the
curves represent the end of day.

Algorithm
Training Stage: LearnM from Data:{Xi, ti}Ni=1

Build Input Kernel : Φ(Xi,Xi) using eq (2)
Build Output Kernel : Ψ(ti,yj) using eq (7)
Ψ = USV T

for each column k of U do
Estimate wk : Uk =

∑N
i=1 wkiΦ(X) + wk0

end for
Basis Vectors : D← X
Store Model:M0 ← {S, V,D,w}

InitializeM∗ ←M0

Testing Stage: Estimate t̂i from Data:{X∗
i }Ni=1,M∗

Build Input Kernel : Φ(X∗
i ,Dj) using eq (2)

for each column k of U do
Calculate Ûk =

∑ND
j=1 wkjΦj(X) + wk0

end for
Ψ̂ = ÛSV T

t̂i = max
i

Ψ̂i, θ̂i = arctan
ty
tx

Adaptation Stage: Update Model M∗ after L trials using
{X∗

i , θ̂
∗
i }Li=1

t̃ = F(θ̂i)

Ψ̃ = Ψ(̂ti,yj) using eq (7)
Ũ = Ψ̃V S−1

for each column k of U do
Update wu

k : Ũk − Ûk =
∑N

i=1 w
u
kiΦ(X∗

i ) + wu
k0 using

eq (4)

end for
Basis Vectors : Du ← X∗

M∗ ← {S, V,D|Du,w|wu}

update the model after every successful trial - oversensitive update.
While such an update presents a new model at every trial, it also
requires an additional processing time (to update the model) at the
end of every trial. Conversely, update after a large number of tri-
als - passive model - might not track the fluctuations fast enough.
Thus, the update process must choose an optimal number of trials
to update the model. In the current data, the decoding performance
varied little (<2%) with different number of adaptation trials. Fig-
ure 2 shows the stable performance of the adaptation algorithm over
multiple blocks and over days. The vertical axis shows the decoding
accuracy measured as the fraction of all correct predictions up to the
current instant over successive adaptation blocks (25 trials).

The update process involves obtaining new basis vectors that fit
the errors from the original model increasing the number of basis
vectors in the updated model. This process includes all estimates de-
spite their proximity to the intended trajectory. However, we can im-
prove the computational performance (reduce number of basis vec-
tors) by selecting only those trajectories, where estimated value (t̂)
deviates more than a threshold from the expected trajectory (t̃). By
allowing a deviation of 1 cm between the expected and intended tra-
jectories the number of basis vectors drastically reduces without im-
pacting the decoding accuracy.

Table 1 compares the result of adaptation to the decoding per-
formance over the decoder age. To observe the long-term effects of
adaptation, we adapted one model continuously over the two weeks
of test data. Another model adapted only the current test session and
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Fig. 3. Decoding Accuracy in sessions with varying field forces. The filled icons represent the accuracy with adapting model and the unfilled
icons represent the accuracy of the baseline model. For ease of reading, different field forces are represented with different shapes.

Table 1. Decoding Accuracy (in %) across decoder age.
Decoder Age 8 9 13 14
H464
No update 93 89 82 66
Daily model Reset 98 96 92 82
Continuous Update 98 97 96 97
H564
No Update 80 66
Daily model Reset 81 70
Continuous Update 81 80

ignored any previous adaptation by resetting the model to M0 at
the beginning of each day. We observe that adaptation improves the
target decoding accuracy over the two weeks. When the model was
not adapted, the accuracy drastically fell around day 14, but adap-
tation stabilized the accuracy over 95%. While model adaptation
only on the current day improves the decoding accuracy, its perfor-
mance gradually decreases with the decoder age due to evolution of
new neural patterns. These results show that learning modulates the
neural activity continuously (rather than daily) and decoders benefit
from the adaptation to variations introduced by this learning.

Table 2 presents results from (while not exhaustive) a represen-
tative literature that decode movement direction from LFP. A direct
comparison of results is difficult as these papers use different record-
ing protocols and use varying classification methods. However, these
studies used cross-validation to obtain the decoding power and ig-
nore any non-stationarity between training and testing samples. A
closer comparison can be made with results from [8], which shows
long-term decoding in an online setting with an accuracy of 80%.

To investigate the effect of adaptation on changing environ-
ments, we applied a similar strategy on sessions where external field
forces against movement were applied. Even for this experiment, the
initial model was initially trained on a session (where a field force
VCCW was applied) and the updated on successive sessions. The
model here needs to tackle both variations due to learning over time
and due to varying external field forces. The results in figure 3 show
that the model is robust to both and achieves an average decoding of
85% on sessions even with different external field forces. Prominent

Table 2. A comparison of literature using decoding accuracy.
Algorithm Decoding Accuracy
Bayesian Decoding, SVM [4] 40%
Directional Tuning [18] 50%
Bayesian Classification [19] 81%
Proposed Method 95%

results occur when 1. there is latency between sessions (between
days 4 and 7) and 2. novel field force (like VCW on day 10) are
applied. In these sessions the decoding is boosted with adaptation
(especially on day 10). These results motivate the use of LFP for
practical BCI even under varying environment conditions.

5. CONCLUSIONS

This paper proposes an adaptive modeling technique that updates the
existing model to account for the variation in data characteristics. We
show that such an adaptation of open-loop neural decoders improves
their performance. Straight line estimates of hand kinetics enabled
efficient update of the decoder without knowledge of actual kinetics.
In this paper, we used a kernel dependency estimation framework to
obtain redundant approximations of multi-dimensional hand kinetics
from intra-cortical LFP and decoded the hand movement direction.
We showed that an adaptive open-loop algorithm sustains the decod-
ing accuracy above 95% over two weeks while an algorithm of the
same framework without adaptation resulted in only 66%. These
results also show that learning is a continuous process and prototyp-
ical examples from the learning stage aid in the accurate decoding of
target direction.

The proposed algorithm appends new relevant feature vectors to
the existing model increasing model size with each update. We ex-
pect that over time some vectors in the model might have little to no
impact on the new observations. Pruning the model to remove such
vectors might result in better computational performance. A closed-
loop BCI would also benefit from adopting this algorithm. Espe-
cially, if the user produces consistent neural features, it reduces the
need to update the model and also sustain consistent performance.
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