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ABSTRACT

This paper, investigates the use of a 3D setting for Brain-

Computer Interface (BCI) by implementing the 3D interface

for the P300-Speller device. The 3D configurations were im-

plemented using two different approaches which are called

Natural 3D and Parallel 2D. The theoretical analyses con-

cerning these two approaches are provided considering the

modifications in speed, accuracy, and capacity. The experi-

mental results on subjects who tested the 3D interfaces are

then provided to validate the theoretical analyses.

Index Terms— 3D BCI, P300-Speller Interface, Virtual

Keyboard, 3D Stereoscopic Images

1. INTRODUCTION

BCI has been the most suitable application to allow commu-

nication, or control of external devices only based on brain

activities [1, 2]. These activities are recorded non-invasively

as the EEG signal [3]. P300-Speller is a BCI device which

works based on Event-Related Potentials (ERPs) appearing

in EEG signal, and has been first developed by Farwell and

Donchin [4] with an interface containing a matrix of sym-

bols, and sequential random flashes on rows and columns as

depicted in Figure 1. If a user keeps a mental count of the

number of the stimulus flashes of a specific symbol, the in-

tensifications of the row and the column containing that sym-

bol elicits a positive wave about 300 ms after the stimulus in

his/her EEG signal, which is called P300 evoked potential.

(a) Flash on the 4th row (b) Flash on the 2nd column

Fig. 1: The classical 2D interface; the flashes of (a) and (b) indicate

the letter ’T’.
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Most of the researches on the P300-speller have focused

on enhancing the signals by removing the artifacts [5, 6, 7],

or on classification of P300 from non-P300 evoked poten-

tials [8]. More recently, the flashing paradigm on rows and

columns has been modified, for example motion of rows and

columns is used as the stimulus instead of flashes [9]. Sim-

ilarly, others used variations on motion, colors or flash pat-

terns [10, 11, 12]. Another paradigm, called checkerboard

paradigm, is proposed in [13] in which the standard matrix of

symbols is virtually superimposed on a checkerboard to avoid

the wrong detection of a character and its adjacent one. For

almost the same reason, [14] has also proposed a new flashing

paradigm, which will be used in our 3D virtual keyboards.

We consider here the use of a 3D virtual keyboard in-

stead of the classical 2D one. Firstly, we intend to investigate

the application of 3D settings in BCI devices by verifying its

performance on the P300-Speller. This can also increase the

user’s acceptability of the device, which is a factor that has

not been taken into much consider. Secondly, considering the

virtual keyboard in 3 dimensions causes changes in flashing

paradigm and can increase the device’s speed and capacity.

This paper is organized as follow. The implementations of

the 3D virtual keyboards are presented in Section 2. In Sec-

tion 3 the theoretical analyses of the proposed 3D extensions

are presented. The mentioned theories are then evaluated ac-

cording to the results obtained from the experiments in Sec-

tion 4. Finally, Section 5 sums up the techniques which were

presented in previous sections.

2. 3D EXTENSIONS OF P300 BASED BCI

Here, we consider modifying the interface of the P300-Speller

by expanding the 2D keyboard to 3 dimensions. Two ap-

proaches of flashing strategies are implemented and com-

pared in this paper: ”natural 3D”(section 2.1) and ”parallel

2D” (section 2.2).

2.1. Natural 3D

The natural generalization of the classical 2D interface is to

reorganize the symbols in a three dimensional array. This is

implemented according to 3D stereoscopic methods [15, 16,
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(b) Relative Speed

Fig. 4: Comparison of the speed of interfaces. Figure 4.a: The re-

quired number of flashes. 4.b: Relative speed

3.3. Capacity

A more relevant measure to quantize the information transfer

rate (ITR) [19] is the capacity, which is defined as equation (4)

for a S-symbol interface, with accuracy Acc.

C = log
2
(S)+Acc log

2
(Acc)+(1−Acc) log

2

(

1−Acc

S − 1

)

,

(4)

The capacity C is expressed in bits per repetition. Due to

the different number of flashes, the duration of a repetition

in each approach is different from other approaches. So the

comparison is more relevant considering the bit rate B, in bits

per second, defined as B = C ×F , or the relative bit rate B′,

expressed in bits per flash (because of a same duration for

every flash), defined as

B′ =
C

N
(5)

As shown in Figure 5, the bit rates of the natural 3D and

parallel 2D interfaces are always larger than the bit rate of

the classical 2D interface for a given accuracy. For paral-

lel 2D, this is due to the smaller number of flashes with

the same accuracy. This improvement factor is given by

N2D/Nparallel2D. However, since the relationships between

the accuracy and the marginal probability of good detec-

tion are nonlinear, the bit rate of the natural 3D interface is

only larger than the bit rate of the classical 2D interface for

large marginal probability P . This threshold decreases as the

number of symbols increases.

4. RESULTS AND ANALYSES

The preliminary experiments with almost a small number of

subjects just intend to prove the functionality of 3D settings

in BCIs and validate the theoretical results that have been ex-

plained. Two comparisons are presented: the classification

accuracy and the capacity of the two 3D extensions.
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(b)144 Symbols
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Fig. 5: Relative bit rate per flash (B′) of equation (5) against

marginal probability of good detection P (Figures 5.a, 5.b) and

against the accuracy (Figures 5.c, 5.d).

4.1. Data, Feature Extraction, and Classification

The data is collected from 16 volunteers between 22 and 34

years old, with normal stereoscopic vision and neurological

state. 8 participants have been subjected to the natural 3D in-

terface, and the other 8 ones to the parallel 2D. They all have

done an experiment on classical 2D before 3D, so that the re-

sults can be compared. For each approach there is a train and

a test session. The interfaces are implemented using OpenGL,

in 5 repetitions with ISI equal to 133 milliseconds, and a duty

cycle of 50% for the flashes. The interfaces’ characteristics

are summarized in table 1. The EEG is recorded via 16 ac-

Interface # Symbols row× column× depth

Classical 2D 36 2× 2

Natural 3D 27 3× 3× 3

Parallel 2D 32 4× 4× 2

Table 1: Implemented Interfaces

tive electrodes with g.USBamp device from g.tec [20]. The

signal is sampled at a rate of 1200 Hz, and filtered by a fourth

order butterworth bandpass filter in the frequency band be-

tween 1 and 12 Hz. To enhance the signals, the spatial filters

are estimated [21, 22, 7] from the training data. The tempo-

rally and spatially filtered signal is then categorized into two

target and non-target epochs, and is used as the two-class data

to train the classifier: Bayesian Linear Discriminant Analy-

sis (BLDA) [23]. K-fold cross-validation is adopted: the

database is divided into 40 symbols used to the training and

10 symbols for the tests. This partition is performed randomly
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2000 times for each testing configuration.

4.2. Accuracy and Marginal Probability

The classification accuracies of the two 3D extensions are

compared in Figure 6. First of all, one notices that the classi-

fication accuracy obviously increases with the increase of the

number of repetitions. Then, as expected in the theoretical

section (Section 3.1), it is worth noting that the classification

accuracy of the classical 2D is larger than the classification

of the natural 3D extension, while they are the same between

the classical 2D and the parallel 2D interfaces. It should be

noted that the results concerning classical 2D in different fig-

ures are the same in average. And the small difference is due

to the fact that they are tested on different subjects.

To verify the theoretical assumptions on the marginal

probabilities, P, Figure 7 is depicted. Figure 7.a proves the

equal marginal probability hypothesis for row and column of

the natural 3D and they are similar to the marginal probability

of good detection with the classical 2D interface; however,

this is not true for marginal probability of good detection of

depth, which is smaller than that of row and column.

Regarding Figure 7.b, for parallel 2D the two assumptions

concerning the marginal probabilities are well validated: first,

these probabilities are similar on rows and columns, and also

similar to that of classical 2D. Second, the marginal proba-

bility of detecting the depth is equal to one after at least 3

repetitions. This proves that the depth is well coded by the

flashing paradigm.

4.3. Capacity

Figure 8 illustrates the capacity of 3D approaches and classi-

cal 2D, against the number of flashes. It shows that the capac-

ity of the parallel 2D interface is higher than that of classical

2D, which is confirmed by the theoretical analysis (Figures

5.c and 5.d), since they have a same accuracy. The variance

of this result can be interpreted as the visual effect while look-

ing at 3D images [24]. However, this variance gets smaller as

the number of flashes increase.
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Fig. 6: Accuracy against the number of repetitions. The median ac-

curacies are plotted, and the error bars extend from the 10% quantile

to the 90% quantile.
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Fig. 7: Marginal probability (P ) against the number of repetitions.

However, Figure 8.a shows that the classical 2D has

higher capacity comparing the natural 3D. As it is already

proved that the natural 3D has less accuracy comparing clas-

sical 2D (Figure 6.a), it is natural that the capacity does not

follow Figures 5.c or 5.d which assume the same accuracy for

all approaches.

5. CONCLUSION

The paper presented two 3D extensions of the classical 2D

interface of P300-Speller: Natural 3D and Parallel 2D. The

theoretical analyses and experimental results are also com-

pared. First, the speed is proven to be higher in both proposed

interfaces comparing classical 2D, since they need smaller

number of flashes. Then, as the modification of the P300-

Speller is done just on the interface, we do not expect any ac-

curacy improvement in the theoretical part, as it is confirmed

in the experiments. This accordance of theoretical results with

the experimental ones is missing only for the marginal prob-

ability of detecting the depth in natural 3D. Finally, with the

analysis of the capacity of the new interfaces, parallel 2D ap-

proach showed a better performance than the other ones.

The validation of theoretical results along with the in-

crease of speed and capacity mostly in the parallel 2D in-

terface, can prove the functionality of the 3D settings not

only in the p300-Speller device, but also in other BCI tech-

nologies which require more ergonomic features, like virtual

worlds [25].
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