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ABSTRACT 

 
With the exponential growth of stereoscopic imaging in various 

applications, it has become very demanding to have a reliable 

quality assessment technique to measure the human perception of 

stereoscopic images. Quality assessment of stereoscopic visual 

content in the presence of artefacts caused by compression and 

transmission is a key component of end-to-end 3D media delivery 

systems. Despite a few recent attempts to develop stereoscopic 

image/video quality metrics, there is still a lack of a robust 

stereoscopic image quality metric. Towards addressing this issue, 

this paper proposes a full reference stereoscopic image quality 

metric, which mimics the human perception while viewing 

stereoscopic images. A signal processing model that is consistent 

with physiological literature is developed in the paper to simulate 

the behaviour of simple and complex cells of the primary visual 

cortex in the Human Visual System (HVS). The model is trained 

with two publicly available stereoscopic image databases to match 

the perceptual judgement of impaired stereoscopic images. The 

experimental results demonstrate a significant improvement in 

prediction performance as compared with several state-of-the-art 

stereoscopic image quality metrics. 

 

Index Terms— Human Visual System, Stereoscopic 

quality assessment, Binocular vision 

 

1. INTRODUCTION 

 
3D visual content has become increasingly popular among modern 

users, who demand high quality immersive multimedia content. 

The quality of stereoscopic 3D video content is degraded at 

different stages of the video delivery life cycle, such as during 

encoding and transmission. Such quality degradations have an 

adverse effect on the quality of experience of its users, and thus 

they need to be quantified accurately to ensure user satisfaction. 

This has led to the requirement of a reliable quality assessment 

technique, which mimics human perceptual judgement on 3D 

visual content. Conventional quality metrics used for 2D content 

have proven to be inadequate to the purpose at hand, and thus 

recently there has been a significant interest among research 

communities to produce novel quality metrics that assess 3D visual 

content quality. In [1]-[2], metrics were proposed to assess the 

quality of stereoscopic images under different degradation types, 

while research effort has been reported on quality assessment of 

stereoscopic video in [3]. However, there is no quality metric that 

is robust enough to predict the quality of stereoscopic content, 

which has undergone different kinds of degradations. Thus, 

modelling the Human Visual System (HVS) using binocular vision 

process is envisaged to pave the way for developing a robust 

stereoscopic visual quality metric [4]. Towards this end, this paper 

proposes a novel stereoscopic image quality metric that is based on 

a cellular model of the HVS. 

When perceiving stereoscopic images, the binocular visual system 

combines the left and right eye views to perceive depth and 

produces a single view known as the cyclopean view. The visual 

cortex of the brain is responsible for processing the visual 

information acquired through the eyes. The first part of the visual 

cortex is the primary visual cortex. There are two main types of 

cells in the primary visual cortex known as simple cells and 

complex cells [5].  

The work presented in this paper proposes to develop a model to 

mimic the behaviour of the cells in the primary visual cortex. The 

research work in [4] addressed mimicking this behaviour, but the 

performance of the method presented was limited due to the 

adopted model of the complex cells being too simplistic. 

Specifically, the complex cells’ model did not discriminate 

between different orientations and sizes of the receptive fields of 

simple cells, in contrast to the operation of the HVS. Furthermore, 

the cellular model did not consider the binocular suppression effect 

that is present in the HVS. To accurately address these issues, the 

work presented in this paper aims to develop a cellular model that 

is more consistent with the HVS.  

Specifically, this paper proposes a full reference stereoscopic 

image quality metric utilising the aforementioned model to 

measure the quality of stereoscopic images objectively, which have 

gone through various types of degradations. The model is trained 

using two publicly available stereoscopic image databases. 

Objective estimations of the final statistical model using images 

from two registered stereoscopic image databases [6] [1] proved a 

consistently high correlation with the subjective results. 

The rest of the paper is organised as follows. The related work to 

the proposed research work found in literature is presented in 

Section 2, and the proposed metric is described in Section 3. 

Section 4 discusses the results obtained by the proposed metric and 

subsequently compares its performance against the state-of-the-art 

metrics. Finally, Section 5 concludes the paper with some insights 

into future work. 

 

2. RELATED WORK 

 
There are two approaches of assessing contours of depth maps 

using PSNR [7] and of assessing cyclopean images with disparity 

maps using SSIM [8] in literature. In [1] and [2], coherence 

between the metric scores and human perceptual judgement was 

shown. 

There are a few research activities reported to identify real 3D 

evaluation metrics in literature. A metric was proposed based on 
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geometrical properties of a 3D object that used Just Noticeable 

Difference (JND) for redundancy reduction [9]. A no-reference 

metric for asymmetric JPEG compression based on partitioning of 

a stereo image-pair in fixed-size blocks to characterise 3D artefacts 

was proposed in [10]. Binocular vision process was used as an 

alternative approach for developing a 3D perceptual metric in [4] 

by modelling binocular fusion.  

The requirement of a reliable and robust technique to evaluate 

human perceptual judgement is still an open research problem. The 

work described in this paper addresses this problem with an 

alternative solution to metric approaches using a cascade of 

statistical and analytical modelling techniques. In the next section, 

the proposed novel method to assess the quality of stereoscopic 

images is described. 

 

3. PROPOSED METHOD 

 
A model for stereoscopic quality assessment is proposed using 

physiological knowledge of the HVS. The binocular view, which 

results in generating binocular energy, is an indication of the 

quality of perception in the HVS [4]. According to the 

physiological studies of the HVS [5], there are mainly two types of 

cells in the visual cortex responsible for binocular vision. The 

simple cells are the first to receive the retinal information at the 

visual cortex. They are responsible for the local spatial frequency. 

Binocular simple cells work in pairs for left and right eyes, and are 

connected to binocular complex cells. The complex cells are 

responsible for the generation of binocular energy. 

 

3.1 Analytical modelling of the primary visual cortex of 

the HVS 

 
An analytical model, which can calculate required binocular 

energy as a set of complex cell outputs, is used. This analytical 

model consists of the individual models that are described below. 

3.1.1 Sampling model 
There are two main visual characteristics of the HVS modelled 

using sampling functions in [11] [12]: 1) image decomposition into 

perceptual channels from low frequencies to high frequencies as in 

the HVS, and 2) localising image elements in spatial and frequency 

spaces. Colour antagonism in the HVS is modelled using a colour 

space conversion to CIE L*a*b* according to [13]. Here, an image 

is represented with a single channel of luminance L* and two 

perpendicular channels of chrominance a* and b*. For better 

performance in latter stages of modelling, the resultant of a* and 

b* is considered as chrominance C* in the proposed model. 
Initially, the stereoscopic (left and right) images are represented as 

complex wavelets. For this purpose, the Complex Wavelet 

Transformation (CWT) [12] is applied on the luminance (L*) 

component, which produces a pair of real and imaginary 

coefficients, and the Discrete Wavelet Transformation (DWT) [11] 

on the two chrominance components. The wavelet representation 

of the chrominance (C*) component is organised as the DWT (a*) 

as the real part and DWT (b*) as the imaginary part [4]. 

 

3.1.2 Simple cell model 
The characteristics of simple cells are modelled from the 

coefficients obtained from the complex representation of the 

images. The Bandelet Transform (BT) is used to model binocular 

simple cells, as it provides a closely matching behaviour to that of 

a simple cell [11]. Sub bands are obtained (as shown in Figure 1) 

in sampling model with respective wavelet coefficients. BT splits 

up those sub bands in a quad tree of variable sizes called Dyadic 

Squares following the image geometry. An orientation is computed 

and assigned to each dyadic square depending on the wavelet 

coefficients. This dyadic square is characterised by its size, 

amplitude, and orientation as a simple cell [14]. 

 

  
Figure 1. Sub bands of sampling model for the left eye view 

 
A pair of real and imaginary dyadic squares, which are output of 

the BT, represents the excitatory and inhibitory responses of a 

group of simple cells with a defined orientation and spatial 

frequency selectivity. The coefficients of the wavelet 

transformation are sensitive to spatial impairments such as 

quantisation noise or blurring. Thus, the spatial impairments are 

reflected in the phase φ(x) and amplitude ρ(x) of the complex 

wavelet representation. 

 

 

Figure 2. Illustration of simple and complex cell models 

 

3.1.3 Complex cell model 
The complex cell model is responsible for calculation of the 

binocular energy. The complex cells inherit most of the properties 

of simple cells, such as being orientation and spatial frequency 

selective, but are invariant of the spatial phase [5]. A complex cell 

receives inputs from several simple cells that are of same 

orientation and spatial frequency selectivity for generating the 

binocular energy. However, due to spatial phase invariance, a 

particular complex cell could receive inputs from both excitatory 

and inhibitory responses of the simple cells.   

As a group, complex cells tend to be more heterogeneous than 

simple cells. Most common type of complex cells performs a 

summation-like operation on the responses of simple cells with 

similar orientation preference [15]. Recently, researchers have 

found evidence to suggest that complex cells perform a MAX-like 

operation on their inputs [16]. Furthermore, there are evidences of 

interactions between complex cells as proposed in the so-called 

recurrent excitation model. In such interactions, the output of one 

complex cell is modulated by the output of another complex cell 

595



[17]. The proposed model of the primary visual cortex is designed 

in a way to capture the features discussed above.  

A pair of dyadic squares (real and imaginary responses of the BT) 

from the left image and a pair from the right image are used in the 

binocular energy calculation. The real and imaginary parts of the 

luminance and chrominance are used to calculate the monocular 

amplitude ρi (x) and monocular phase φi (x) of the xth dyadic 

square of the left and right images, as in (1) and (2) [4]. 

  ( )  |  ( )|     (  ( ))
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The output of a complex cell that performs a summation like 

operation is the resultant of the excitatory and inhibitory responses 

of the simple cells as given in (3). 
  ( )    

 ( )    
 ( ) 

                                  ( )  ( )   (  ( )    ( ))  (3) 
In (3), l and r represent left and right images, respectively, and 
  ( ) is the binocular energy generated by a complex cell that 

performs a summation-like operation. Here (  (   )    (   )) is 

the inter-ocular phase shift, which in turn relates to the horizontal 

disparity between the left and right views. 

Binocular suppression is applicable when left and right images 

have undergone asymmetric impairments, which causes the HVS 

to ignore the view of one eye and perceive through the other eye. 

This behaviour of binocular suppression can be modelled using the 

complex cells that perform MAX-like operation. The binocular 

energy output   (   ) of a complex cell that performs a MAX-like 

operation is given as: 
 
  ( )     (  

 ( )   
 ( ))  (4) 

 

The proposed method also considers interactions between the 

complex cells that perform summation-like and MAX-like 

operations.  

The total binocular energy for the luminance component EL is 

calculated as a weighted sum of all the complex cell outputs as in 

(5). 
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In (5)                 are corresponding weights for energy outputs 

of complex cells    
    

and also for interactions of similarly 

operational energy outputs of two complex cells as shown in 

Figure 2. Similar to (5), the total binocular energy for the 

chrominance component EC is calculated. As given in (6), the total 

binocular energy E is the addition of both the luminance energy 

and chrominance energy.  
                 ( ) 
 

3.1.4 Statistical training of the analytical model 
To estimate the coefficients of the analytical model presented in 

the previous section, the model is trained utilising two publicly 

available stereoscopic image databases.Stereoscopic image pairs 

used from the first database [6] consist of 8 different scenes with 

each scene having 27 stereoscopic images consisting of 3 distortion 

types (JPEG 2000, JPEG, and Gaussian Blur) and 9 profiles on 

each distortion. These profiles have 3 symmetrically impaired 

image pairs and 6 asymmetrically impaired image pairs. In the 

second database [1], there were 5 scenes with each scene having 15 

stereoscopic images consisting of the 3 distortion types and 5 

symmetric profiles on each distortion type.  

The total of 291 stereoscopic stimuli from the two databases is 

divided into two sets, one for training and the other for testing the 

analytical model. The training set was defined with 222 stimuli, 

whereas the remaining 69 stimuli were used as the testing set. 

Finally, the coefficients described in (5) were calculated using the 

stepwise linear regression modeling function in Mat Lab® R2013. 

The final solution yielded in 25 terms including 13 interaction 

terms. However, due to the space limitations, we have not provided 

the final coefficients and related terms in the paper. 
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Figure 3. The correlation plots between the objective and subjective scores, for the training and testing sets  
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4. RESULTS AND DISCUSSION 
 
Performance of the proposed method is compared with a number 

of state-of-the-art metrics, based on several performance criteria as 

outlined in [18]. Specifically, the following parameters are 

measured after logistic transformation of the objective scores on to 

the scale of subjective scores, as shown in Figure 3: the prediction 

consistency by the Pearson’s linear Correlation (PCC), prediction 

monotonicity by Spearman’s Rank Order Correlation (SROCC) 

and prediction accuracy by Average Absolute Error (AAE) and 

Root Mean Squared Error (RMSE). The proposed metric is 

compared against four different stereoscopic image quality metrics 

that are proposed recently, which are SSIM_Ddl metric [1], the 

average SSIM of the left and right views (SSIM_Avg) [2], the No 

Reference stereoscopic Image Metric (NRIM) [10], and the 

Binocular Energy Quality Metric (BEQM) [4]. The performance 

comparison results are provided in Tables 1 and 2.  
 

Table 1 Performance measures for the training set 
  PCC SROCC AAE RMSE 

BEQM [4] 0.695 0.689 46.551 0.427 

SSIM_Ddl [1] 0.681 0.681 47.084 0.116 

SSIM_Avg [2] 0.644 0.669 46.986 0.113 

NRIM [10] 0.561 0.587 29.727 3.419 

Proposed 0.961 0.956 3.822 4.194 

 

Table 2 Performance measures for the testing set 

 PCC SROCC AAE RMSE 

BEQM [4] 0.771 0.764 48.77 0.4179 

SSIM_Ddl [1] 0.733 0.718 49.53 0.1116 

SSIM_Avg [2] 0.683 0.691 49.45 0.1107 

NRIM [10] 0.703 0.763 32.56 2.4300 

Proposed  0.920 0.894 4.94 6.0984 

 
The results presented in Tables 1 and 2, as well as the correlation 

plots in Figure 3, clearly illustrate that the proposed metric 

significantly outperforms all the considered other metrics in every 

aspect of performance comparison. Furthermore, the results 

illustrate that the proposed analytical model of the primary visual 

cortex is quite suitable for the purpose of stereoscopic quality 

assessment. The closest contender to the proposed method is the 

BEQM, which inspired the current work, and which also consider a 

binocular energy model. The improvements of the presented work 

over the BEQM can be attributed to three major novelties 

introduced in the proposed analytical model. Firstly, in BEQM, all 

the simple cells are treated in a similar way without considering 

different spatial orientations and frequencies, whereas in the 

proposed model, different weights are assigned based on individual 

contributions. Secondly, the model in BEQM does not consider 

complex cells with a MAX operation, and thus fails to predict the 

quality of asymmetrically processed stereoscopic stimuli. Finally, 

the proposed method incorporates interaction between complex 

cells, which has been ignored in BEQM.  

On the limitations of the presented work, it should be noted that the 

proposed method did not perform well on stimuli that were 

impaired with white noise. Thus, such stimuli have not been 

considered in this study. To overcome this limitation, an algorithm 

is required to identify the type of noise, and treat the stimuli 

accordingly.  

  

5. CONCLUSION AND FUTURE WORK 

 
This paper proposed a cellular model of the primary visual cortex 

of the HVS to predict the subjective quality of impaired 

stereoscopic images. Specifically, the complex cells of the primary 

visual cortex have been modelled as consistent with the 

physiological literature, where they have been modelled as 

orientation and spatial frequency selective cells that respond to 

perform summation and MAX operation on simple cell responses. 

Furthermore, interactions between complex cells have also been 

considered. The binocular energy has been calculated as a 

weighted sum of different complex cell outputs, thus treating 

different complex cell types asymmetrically to produce an accurate 

prediction of the stereoscopic image quality. The proposed model 

has been trained using two publicly available stereoscopic image 

databases. The experimental results of the proposed metric have 

illustrated a correlation of 0.92 with subjective results. Further 

improvements are sought to improve the prediction performance of 

the proposed metric by conforming to further studies on 

physiology of the HVS, while also making it suitable to measure 

the quality of impaired stereoscopic videos.  
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