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ABSTRACT

Brain injury at the time of birth could lead to severe neuro-
logical dysfunction at an older age. Grading the brain in-
jury in the early hours after birth could help doctors deter-
mine a prompt and reliable treatment. This work presents an
automated neonatal EEG grading system based on a cross-
disciplinary method of using Support Vector Machine and su-
pervectors, initially developed for speaker identification. The
EEG is classified into one of the four grades of neonatal brain
injury. The preliminary results show promising performance
and are an improvement on the previously published results.

1. INTRODUCTION

Hypoxic-ischaemic encephalopathy (HIE) is the most com-
mon cause of neonatal deaths and long-term neonatal neuro-
logical dysfunction [1] with reported incidences of 3-5 per
1000 births [2]. HIE injury is a result of the lack of oxygen
to the neonatal brain around the time of birth. The outcomes
of the HIE injury at the later ages depends on the severity
of the HIE insult. Mild encephalopathy could have a normal
outcome, moderate encephalopathy having a 20-40% risk of
neurological disability and severe encephalopathy leading to
severe neurological disability or death [3]. Thus an early de-
tection of the grade of HIE injury is of utmost importance for
doctors to prescribe an early treatment.

HIE is graded using Electroencephalography (EEG) in
four main types [4] as briefly described in Table 1 and shown
in Fig. 1. As can be seen the two main features that dif-
ferentiate HIE grades are Inter-Burst-Interval (IBI) and the
discontinuity of the background EEG. In clinical practice,
grading HIE requires the presence of highly qualified neu-
rophysiologists and considerable time. This expertise is not
widely available in Neonatal Intensive Care Units (NICU).
An automated system for grading HIE could be of great help
for the medical staff.

Automatic grading of HIE affected EEG (HIE-EEG) is a
relatively new area. In a recent study, Stevenson et. al. pro-
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posed an automated system for grading HIE using a multi-
class linear discriminant classifier trained on the amplitude
modulation and instantaneous frequency features [5]. An ac-
curacy of 77.8% was reported.

The HIE-EEG exhibit various patterns as can be seen in
Fig. 1. Some of these patterns could be similar across HIE
grades and only their inter-pattern variability along the whole
EEG recording characterizes its grade. In this sense, the clas-
sification of EEG into different grades resembles a problem
of closed-set text-independent speaker identification where
statistical information of the underlying phonetic variability
within the whole utterance is used to classify a speaker [6].

The most important part of speaker identification system
is the creation of the speaker models. Both generative and dis-
criminative modeling approaches have been reported in liter-
ature [6]. A combination of these approaches resulted in de-
velopment of the supervector Support Vector Machine (SVM)
SVM, where stacked Gaussian Mixture Model (GMM) means
are fed into the linear SVM [7]. This method has also shown
promising results in other pattern recognition areas [8, 9, 10].

In this study, we have developed an automated HIE-EEG
grading system using the supervector SVM approach.

The paper is organized as follows: Section 2 describes the
dataset used in this work. GMM supervectors and their use
with the SVM is outlined in Section 3. The developed au-
tomatic HIE-EEG grading system is explained in Section 4.
Results and discussion are presented in Section 5 with con-
clusions drawn in Section 6.

2. DATASET

The dataset used in this study comprises approximately one
hour long EEG selected from the recordings of 54 full term
neonates with HIE. The data was recorded in the NICU of
Cork University Maternity Hospital, Cork, Ireland. The stan-
dard protocol for EEG recording in the NICU required the
following 9 active electrodes: T4, T3, O1, O2, F4, F3, C4,
C3, and Cz. The following 8 EEG bipolar pairs were used to
annotate the data: F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-
Cz, Cz-C3 and C3 - T3. Each EEG recording had continuous
presence of a specific HIE grade. The EEG data were free of
seizures and major movement artifacts. The files were graded
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Fig. 1. Ideal epochs of EEG showing grades of HIE (a) Grade 1: Normal/Mild abnormalities. (b) Grade 2: Moderate abnor-
malities. (c) Grade 3: Major abnormalities. (d) Grade 4: Inactive.

by two independent EEGers using the system defined in [4]
and summarized in Table 1. The same dataset has previously
been used in [5] and thus a direct comparison of results is
possible.

3. GMM SUPERVECTOR AND SVM

The GMM models a probability density function as a weighted
sum of M Gaussian components:

p(x) =

M∑
i=1

wi g(x|mi,Σi), (1)

where x is a feature vector, wi is the mixture weight with mi

the mean and Σi the covariance matrix for the ith mixture
component g(x|mi,Σi).

Given a set of N feature vectors X = (x1,x2, . . . ,xN )
and a Universal Background Model (UBM), a new GMM
model is created by adapting the means mi of the UBM us-
ing Maximum-a-Posteriori (MAP) adaptation. A GMM su-
pervector, v, is created by concatenating all the means of the
new model.

Kernels in the SVM are used to map the data from the
input space into a high-dimensional space where the data be-
come linearly separable. It is shown in [7] that an inner prod-
uct between two supervectors, va and vb, is an upper bound
of the Kullback-Leibler divergence between the two GMMs.
Thus, the SVM kernel function is defined as,

K(va,vb) =

M∑
i=1

wi(m
a
i )tΣ−1

i mb
i

=
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2

i ma
i )t(
√
wiΣ

− 1
2

i mb
i ). (2)

Table 1. HIE Grades

Grade Description

1 Normal/Mild abnormalities: Continuous
background pattern with mild asymmetric
patterns, mild voltage depression

2 Moderate abnormalities: Discontinuous ac-
tivity with IBI ≤ 10s

3 Major abnormalities: Discontinuous activity
with IBI 10-60s, severe fading background
patterns

4 Inactive: Background activity of≤ 10µV or
severe discontinuity of IBI ≥ 60s

It can be seen that Eq. 2 represents the dot product be-
tween the two supervectors scaled by a factor of

√
wiΣ

− 1
2

i .
Note that the scaling terms, weight wi and covariance matrix
Σi, are the same for all sequences and can be computed be-
forehand. This will allow the use of a simple linear kernel
inside the SVM.

4. AUTOMATED EEG GRADING SYSTEM

4.1. Preprocessing and Feature Extraction

An overview of the complete system is shown in the Fig.
2. The EEG from each channel is first down-sampled from
256Hz to 32Hz with an anti-aliasing filter set at 12.8Hz. The
down-sampled and filtered EEG is then segmented into 8s
epochs with 50% overlap. A total of 55 features are extracted
from each EEG epoch. This feature set provides a generic
EEG description which is computed from the frequency, time
and information theory domains as described below.
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Fig. 2. Automated neonatal HIE-EEG grading system.

Frequency Domain: The power spectrum density (PSD)
of each epoch is obtained using a 256 point Fast Fourier
Transform (FFT). A number of features are extracted from
the PSD of the epoch. Additionally, the EEG is decomposed
into 8 coefficients using the Daubechies 4 wavelet, the energy
in the 5th coefficient corresponding to 1-2Hz is used as a
feature.

• Total power (0-12Hz)
• Peak frequency of spectrum
• Spectral edge frequency (80%, 90%, 95%)
• Power in 2Hz width subbands (0-2Hz, 1-3Hz, ...10-

12Hz)
• Normalised power in subbands
• Wavelet energy

Time Domain: A number of features are extracted from
the epoch of EEG and the first and second derivative of the
EEG denoted by ∆ and ∆∆ respectively.

• Curve length
• Number of maxima and minima
• Root mean squared amplitude
• Hjorth parameters
• Zero crossings (raw epoch, ∆ and ∆∆)
• Autoregressive modelling error (model order 1-9)
• Skewness
• Kurtosis
• Nonlinear energy
• Variance (∆ and ∆∆)

Information Theory: Features based on information the-
ory were chosen based on an analysis of features by Faul et
al. [11].

• Shannon entropy
• Singular value decomposition entropy
• Fisher information
• Spectral entropy

The usability of these features for EEG has been discussed
in previous work on neonatal [12, 13, 14], adult seizure de-
tection [15], and neurological outcome prediction [16]. Thus,

the extracted features can capture the information required for
grading HIE-EEG.

4.2. UBM and Supervector

After feature extraction, Principal Component Analysis
(PCA) is then used to reduce the number of correlated fea-
tures. This also allows the use of a diagonal covariance matrix
within the GMM training. The UBM is created by training
a GMM with all the training data. This model represents the
diversity of EEG across all HIE grades, artifacts etc. This
UBM compensates for the lack of training data available for
direct training of individual GMMs for each HIE grade.

Then, the sequences of 20 feature vectors are created
which span over 80 seconds of the EEG signal. A similar
duration of EEG was chosen for processing in [5]. A GMM
model is created for each sequence by the MAP adaptation of
means of the UBM. The adapted means are then concatenated
to form a supervector.

4.3. Classification

The supervectors are fed to the SVM. We have used a one-
against-one approach for multi-class SVM classification [17].
Each SVM model is trained from the supervectors of two
grades with 2-fold cross validation used on the training data
to find the parameter C for the linear SVM.

For each sequence, the output of the multi-class SVM is a
6-dimensional vector which contains the grades assigned by
each classifier. Majority voting is performed on this vector
to get a decision for a given sequence. Decisions from all the
sequences in a recording from all 8 channels are concatenated
in one vector. An overall majority voting is then performed
on this vector to determine the HIE grade for a complete EEG
recording.

5. RESULTS AND DISCUSSION

The Leave One Out (LOO) performance assessment is used
in this work. In this routine, the system is trained using the
data from 53 recording and remaining one unseen recording
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Table 2. Confusion Matrix of the output of the system’s out-
put and actual assigned grade by the EEGer.

Actual System’s output

Grade 1 2 3 4 Total Incorrect

1 21 1 0 0 22 1
2 5 9 0 0 14 5
3 1 1 10 0 12 2
4 0 0 1 5 6 1

Precision(%) 80 81 90 100

is used to test the system. The process is repeated for each
recording. The LOO routine produces an almost unbiased
performance assessment of the developed system [18].

Table 2 shows the results of the proposed system. The
overall accuracy of the proposed automated HIE grading sys-
tem was 83.3%. These results are superior to the 77.8% pre-
sented in [5]. As can be seen 9 out of 54 recordings were
misclassified, with most confusion observed between grades
1 and 2. This is similar to the results presented in [5].

The last row of the confusion matrix in Table 2 shows the
precision of the system which is defined as the ratio between
the number of correctly assigned decisions and the number
of total decisions assigned to a specific grade. It can be seen
that the system is over 90% precise for classifying the data of
grades 3 and 4, whereas its precision is significantly lower for
grade 1 and 2.

The confidence level of assigning a grade to a testing
recording was also investigated. This can be extracted from
the number of winning votes in the majority voting proce-
dure. A threshold on the percentage of winning votes is used
to label decisions as certain or uncertain.

Fig. 3 shows the accuracy of the system at various con-
fidence levels. As can be seen the accuracy increases when
only certain decisions are made. The improvement comes at
the expense of not taking into account the recordings with un-
certain decisions. It can be seen that the accuracy increases
almost linearly with the increase of uncertain decisions. The
circle shows the performance of the system without uncer-
tainty as described in the Table 2 whereas the square indi-
cates the best achievable accuracy of 96% at the expense of
not making a decision for almost half of the recordings. This
point corresponds to making a decision with at least 2/3 ma-
jority.

The distribution of certain and uncertain correct and in-
correct decisions made by the system for the square marker
is shown in Fig. 4. Of the total number of the correctly clas-
sified recordings (45), 27 were correctly classified with cer-
tainty, 18 were correctly classified with uncertainty. Among
9 mis-classifications, only 2 were misclassified with certainty
and 7 were uncertain mis-classifications. As expected, most

Fig. 3. Accuracy of the certain decisions at the expense of not
accommodating the uncertain decisions
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Fig. 4. The distribution of certainty of decisions made by the
system.

uncertain decisions occurred between grade 1 and 2.
The major cause of the decreased accuracy of the system

for classifying grade 1 and 2 is the similar morphology of the
EEG signals in both grades, as could be seen in the Fig. 1. It
was also observed that except for one recording, the second
best assigned grade to the misclassified files was their actual
correct grade.

6. CONCLUSIONS AND FUTURE WORK

A novel system of grading HIE injury in neonatal EEG has
been developed. This system is based on a cross-disciplinary
approach of using the supervector SVM technique that was
originally developed for the speaker identification problem.
Promising performance was reported when compared to the
current state-of-the-art results [5]. Some of the key areas
to be focused in the future is the modeling of sleep cycling
states, incorporation of other physiological signals such as
heart rate variability to the proposed framework, and refined
post-processing steps.
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