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ABSTRACT
This paper proposes new time-frequency features for de-
tecting and classifying epileptic seizure activities in non-
stationary EEG signals. These features are obtained by trans-
lating and combining the most relevant time-domain and
frequency-domain features into a joint time-frequency do-
main in order to improve the performance of EEG seizure de-
tection and classification of non-stationary EEG signals. The
optimal relevant translated features are selected according
maximum relevance and minimum redundancy criteria. The
experiment results obtained on real EEG data, show that the
use of the translated and the selected relevant time-frequency
features improves significantly the EEG classification results
compared against the use of both original time-domain and
frequency-domain features.

Index Terms— Biomedical signal processing, time-
frequency representation, time-frequency features extraction,
Epileptic seizure detection, EEG classification.

1. INTRODUCTION: PROBLEMATIC, CONTEXT
AND RELATED WORK

Electroencephalogram (EEG) is a representative signal con-
taining information of the electrical activity of the brain gen-
erated by the cerebral cortex nerve cells; it has been the most
utilized signal to detect different abnormalities such as seizure
which can lead to permanent brain damage and even fatalities
if not detected and treated early [1]. Analyzing the EEG is
a proven approach for detecting seizure but their manual de-
tection is time consuming especially with long recordings. It
is therefore desired to develop an automated system which
can help the neurophysiologists to detect the EEG seizure in
the brain with high accuracy and then to determinate the ap-
propriate diagnostic. The EEG signal parameters extracted
and analyzed using computer based digital signal and image
processing techniques are highly useful and more suitable for
detecting EEG seizure activities and classifying them with a
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relevant degree of severity in such system [2, 3, 4, 5]. A typ-
ical scheme for an EEG seizure detection and classification
system includes the following three steps: (1) EEG signal
analysis in either time, frequency, time-scale or joint time-
frequency (T-F) domain, (2) features selection and extraction
which characterize the seizure activity, and (3) classification
of these features in order to detect the presence of seizure ac-
tivity in the EEG signal by assigning it to seizure abnormality
class or normal class.

Various methods for detecting EEG seizure have been
previously proposed based on the above-mentioned scheme.
These methods use EEG features in the time domain [6, 7,
8, 9], frequency domain [7, 8], and T-F domain [3, 4, 5], as
well as time-scale domain [10]. The time-domain features
extracted from EEG signals include: statistical moments-
based (e.g. central moments and coefficient of variation),
amplitude-based (e.g. average amplitude and derivatives of
the signal’s amplitude), and entropy-based (e.g. Fisher infor-
mation, Shannon and approximate entropies) features. The
frequency-domain features extracted from the spectrum of
EEG signals include: power spectrum-based (e.g. spectrum
normalized power and sub-band powers), spectral-based (e.g.
spectral flux, centroid, Roll-Off and flatness), and entropy-
based (e.g. spectral entropy) features. The time-scale fea-
tures are extracted from the mutli-scale representation (e.g.
wavelets and X-lets) of the EEG signal and include: the
statistics of the details coefficients of the EEG signal (e.g.
mean, variance, zero-crossing rate, etc.) and their relative
energies. In the T-F domain, the features are extracted from
the T-F representation of the EEG signal and include the
non-stationary features -that are able to characterize the non-
stationary nature and multi-component characteristics of the
EEG signal- such as the instantaneous frequency and those
based on signal and image processing techniques, recently
proposed in [3, 4, 5].

As EEG signals are non-stationary with time-varying fre-
quency contents, a time-frequency signal analysis is used to
characterize the seizure activity present in these signals. This
study aims to define new T-F features class by translating
some relevant time-domain and frequency-domain features

2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP)

978-1-4799-2893-4/14/$31.00 ©2014 IEEE 5930



to the joint T-F domain in order to improve the performance
of EEG seizure detection and classification systems. The
translated features are then ranked and selected according to
maximal-relevance and minimal-redundancy criteria in order
to define the optimal set of relevant features thus making it
possible to reduce the computation cost of these systems.

2. EEG SEIZURE DETECTION AND
CLASSIFICATION

2.1. Time-frequency representations

In order to develop EEG seizure detection and classifica-
tion methods in the T-F domain, it is necessary to select
a suitable T-F Representation (TFR) to represent the non-
stationary EEG signals. The most common are Quadratic
Time-Frequency Distributions (QTFDs) such as the Wigner-
Ville Distribution (WVD), Smoothed WVD (SWVD), Choi-
Williams Distribution (CWD), Modified-B Distribution (MBD)
and Spectrogram (SPEC) [2].

For a given analytic non-stationary signal z[n] associated
with the real discrete time signal x[n], n = 0, 1, . . . , N − 1,
the discrete version of a QTFD is given by

ρ[n, k] = 2 DFT
n→k

{
G[n,m] ∗

n
(z[n+m]z∗[n−m])

}
(1)

where G is the time-lag kernel of the TFD and ∗
n

stands for

convolution in time. ρ[n, k] is represented by an N ×M ma-
trix ρwhereM is the number of FFT points used (N >M ) in
calculating the TFD. Note that n = t.fs and k = 2M

fs
f where

t and f are, respectively, the continuous time and frequency
variables, and fs is the sampling frequency of the signal.

2.2. T-F analysis for EEG seizure detection

The TFR shows the start and stop times of signal components
and their frequency range, as well as the component variation
in frequency with time. Figure 1 shows an example of EEG
signal with seizure and non-seizure activities in the time, fre-
quency and joint T-F domains, in order to illustrate the differ-
ence between them and show how the QTFD plot can provide
more information about the non-stationary nature and multi-
component characteristics of the EEG signals than the time or
the frequency representations [3, 4, 5].

2.3. T-F approach for EEG classification

Based on the EEG classification system described in [3, 4, 5],
the T-F approach for automatic classification of EEG seizure
activity proposed in this study includes the following steps:
(1) finding the optimal TFR that better represent EEG signals,
(2) selecting and extracting features which characterize the
seizure pattern from this TFR, and (3) finally allocating the
vector containing these features to the relevant class using a
multi-class classifier. The selected and extracted T-F features

(a)

(b)

Fig. 1. An example of EEG signal with (a) non-seizure and
(b) seizure activities, in the time, frequency and joint T-F do-
mains. The TFR have been generated using SWVD.

need have the ability to discriminate between different classes
in the classification system.

3. T-F FEATURE SELECTION AND EXTRACTION
METHODOLOGY

3.1. T-F features translation

Here, we propose a new T-F features class defined by trans-
lating and/or calibrating some most relevant time-domain and
frequency-domain features to capture the signals of seizure
activities in non-stationary EEG signals with a view to clas-
sify them in the joint T-F domain. Tables 1 and 2 show the rel-
evant time-domain and frequency-domain features that have
been selected in this study and their translated/calibrated ver-
sion in the T-F domain. The relevant time-domain features
selected include: average amplitude, derivatives of the sig-
nal’s amplitude and entropy-based features [6, 7, 8, 9]. For
the frequency domain, the relevant features selected include:
power spectrum-based and entropy-based features [6, 7, 8].

We note that the mappings of frequency-domain features
involve a summation along the time axis of TFRs so as to
translate them by transforming them with a frequency do-
main representation (assuming that the marginals are satis-
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Table 1. Time-domain features and their T-F translated version. (Given a real discrete time EEG signal x, then z and ρ are the
analytical signal obtained using the Hilbert transform and the QTFD of z, respectively. F(t) and F(tf) stand respectively for
the features in the time domain and the translated features in the T-F domain).

Time features (F(t)) T-F translated features (F(tf))
Statistical moments-based features:
•Mean, variance, skewness and kurtosis of the EEG signal [6, 7]
F

(t)
1 = µ = 1

N

∑N
n=1 |z[n]| F

(tf)
1 = µ(t,f) = 1

NM

∑M
k=1

∑N
n=1 ρ[n, k]

F
(t)
2 = σ2 = 1

N

∑N
n=1 (µ− |z[n]|)2 F

(tf)
2 = σ2

(t,f) = 1
MN

∑M
k=1

∑N
n=1

(
µ(t,f) − ρ[n, k]

)2
F

(t)
3 = 1

Nσ3

∑N
n=1 (|z[n]| − µ)3 F

(tf)
3 = 1

(NM−1)σ3
(t,f)

∑M
k=1

∑N
n=1

(
ρ[n, k]− µ(t,f)

)3
F

(t)
4 = 1

Nσ4

∑N
n=1 (|z[n]| − µ)4 F

(tf)
4 = 1

(NM−1)σ4
(t,f)

∑M
k=1

∑N
n=1

(
ρ[n, k]− µ(t,f)

)4
• Coefficient of variation of the EEG signal [6]

F
(t)
5 = σ

µ =

√
F

(t)
2

F
(t)
1

F
(tf)
5 =

σ(t,f)
µ(t,f)

Amplitude-based features:
•Median absolute deviation of the EEG amplitude [7]
F

(t)
6 = 1

N

∑N
n=1 (|z[n]− µ|) F

(tf)
6 = 1

NM

∑M
k=1

∑N
n=1 |ρ[n, k]− µ(t,f)|

• Root mean square (RMS) amplitude [8]

F
(t)
7 =

√∑N
n=1 z[n]2

N F
(tf)
7 =

√∑N
n=1

∑M
k=1

ρ[n,k]

NM

• Inter-quartile range (IQR) [9]
F

(t)
8 = z[

3(N+1)
4 ]− z[N+1

4 ] F
(tf)
8 = 1

M

∑M
k=1

(
ρ[

3(N+1)
4 , k]− ρ[N+1

4 , k]
)

Entropy-based feature: Shannon entropy [7, 8]
F

(t)
9 = −

∑N
n=1 z[n] log2 (z[n]) F

(tf)
9 = −

∑N
n=1

∑M
k=1 ρ[n, k] log2(ρ[n, k])

fied). The same applies to the time-domain features.

3.2. T-F translated features selection

The translated features listed in Tables 1 and 2 can be ranked
and selected in order to determine the most relevant features
with minimum redundancy and maximum relevance. This can
be done using the mutual information defined in [11], allow-
ing us to select the relevant features according to Maximum
relevance and Minimum redundancy criteria. We use in this
study the feature selection method called mRMR (minimum-
Redundancy-Maximum-Relevance), proposed by [11]. This
method allows to select the maximum relevant features with
a minimum redundancy using mutual information measure.

4. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the translated T-F features for EEG
seizure classification is assessed using the real adult EEG
database described in [12]. It consists of 5 sets of data referred
as sets A-E. Each set contains 100 free-artefact single-channel
EEG segments with duration of 23.6 seconds acquired from
normal subjects and patients with epileptic seizures. Each
EEG segment in each set has been recorded at fs = 173.6Hz
sampling rate and and therefore has 23.6 × fs = 4096 sam-
ples. The desired classification is in two different classes of
EEG signals, namely: N and S. The class N includes set A
which contains 100 EEG segments without seizure acquired
from 5 healthy volunteers with eye open and the class S in-
cludes set E which contains 100 EEG segments with seizure
acquired from 5 patients. Each class has 100 EEG segments.

The T-F feature set F(tf) = {F (tf)
1 , . . . , F

(tf)
16 }, was ex-

tracted from the TFR of each EEG segment of length 2.95
seconds (with N = 512 samples). For practical considera-
tions in terms of relevance, only the five QTFDs are chosen
in this simulation: WVD, SWVD, CWD, MBD and SPEC.
The parameters of the MBD and CWD were respectively cho-
sen as β = 0.01 and σ = 0.9 with lag window length of
127. The windoww[n] for the SWVD and SPEC distributions
was chosen to be a Hanning window of length bN/4c sam-
ples. For performance evaluation, a multi-class SVM classi-
fier was trained using the features extracted from EEG signals
in the database. We compared the classification results for
each QTFDs. The database {N,S} that includes 200 EEG
segments was split randomly in two parts; 30% of the data
(i.e., 60 segments with 30 segments in each class) were used
for training and 70% (i.e., 140 segments with 70 segments in
each class) for testing the classifier.

Table 3 shows the total classification accuracy results us-
ing both original time-domain and frequency-domain features
{F(t),F(f)} and their T-F translated features F(tf) extracted
from different QTFDs of EEG segments. One can notice that
the translated features improve significantly the classification
results compared to the use of original features {F(t),F(f)}
by up to 2% for 140 EEG segments. This is confirmed by the
total classification accuracy calculated for each QTFD where
the best result is obtained using the SWVD and SPEC; and is
98.57% for 140 EEG segments. These results confirm that in-
cluding T-F features improves the EEG seizure classification
performance. This can be improved by increasing the number
of EEG segments in the training-step.

To assess the relevance of the proposed T-F features in the
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Table 2. Frequency features and their T-F translated version. (For a real discrete time EEG signal x, then Z and ρ are the
Fourier transform of the analytic signal z and the QTFD of z, respectively. Also, F(f) and F(tf) stand respectively for the
features in the frequency domain and the translated features in the T-F domain).

Frequency features (F(f)) T-F Translated features (F(tf))
Power spectrum-based feature: maximum power of the frequency bands [6, 8]
F

(f)
1 =

∑δ
k=1 |Z[k]|2 F

(tf)
10 =

∑N
n=1

∑Mδ
k=1 ρ[n, k] }' Sub-bands energies

F
(f)
2 =

∑M
k=δ+1 |Z[k]|2 F

(tf)
11 =

∑N
n=1

∑M
k=Mδ+1 ρ[n, k]

In this study, only two sub-bands were considered using the EEG data described in Section 4 whereMδ = bM/fsc

Spectral-based features:
• Spectral flux: difference between normalized spectra magnitudes [7]

F
(f)
3 =

∑M
k=1

(
Z(l)[k]− Z(l−1)[k]

)2
F

(tf)
12 =

∑L
n=1

∑P
k=1(ρ[n, k]− ρ[n+ L, k])2

Z(l) and Z(l−1) are normalized magnitude of the Fourier transform at l and l− 1 frames L is a predetermined lag and P is the total of sub-bands
• Spectral centroid: average signal frequency weighted by magnitude of spectral centroid [7]

F
(f)
4 =

∑M
k=1 k|Z[k]|∑M
k=1

|Z[k]|
F

(tf)
13 =

∑M
k=1 kρ[n,k]∑M
k=1

ρ[n,k]
(' instantaneous frequency)

• Spectral Roll-Off (i.e. spectral concentration below threshold) [7]
F

(f)
5 = λ

∑M
k=1 |Z[k]| F

(tf)
14 = λ

∑N
n=1

∑M
k=1 ρ[n, k]

In this study, λ is chosen to be 0.85 (' frequency under which 85% of the signal power resides)
• Spectral flatness: indicates whether the distribution is smooth or spiky [7]

F
(f)
6 =

(∏M
k=1 Z[k]

) 1
M
(∑M

k=1 Z[k]
)−1

F
(tf)
15 =

(∏N
n=1

∏M
k=1 ρ[n,k]

) 1
NM∑M

k=1

∑N
n=1 ρ[n,k]

(' Energy localization)

Spectral entropy-based feature: measure the regularity of the power spectrum of the EEG signal [8]
F

(f)
7 = 1

log(M)

∑M
k=1 P (Z[k]) logP (Z[k]) F

(tf)
16 = 1

1−α log2

(∑N
n=1

∑M
k=1 ρ

α[n, k]
)

(' Rényi entropy)

EEG classification system, the translated features are ranked
by order of maximum-relevance and minimum-redundancy
criteria, for each QTFD. Table 4 shows the rank of the trans-
lated features obtained using mRMR method [11]. Note that
the rank is based on the entropy score according to the mini-
mum redundancy-maximum-relevance criteria [11]. One can
notice by observing the top-ranked features that the following
features:

{
F

(tf)
2 , F

(tf)
8 , F

(tf)
11 , F

(tf)
14

}
are the most relevant

features for the most QTFDs. This is confirmed by assessing
the performance of these selected relevant features for EEG
classification. The total classification accuracy using only
these 4 top-ranked T-F features is 89.29%; and exceeds the
use of their original version by up to 7% (82.14%) for 140
EEG segments. Finally, the use of the relevant translated fea-
tures reduces significantly the computation cost of the classi-
fication system.

5. CONCLUSION

This paper shows that translating the relevant time-domain
and frequency-domain features into the joint T-F domain al-
lows to define new T-F features class with better performance
in EEG seizure classification. The experimental results show
that the use of the selected relevant T-F features improves
significantly the classification results compared to the use of
their original version by up to 7%. Also, the use of the opti-
mal relevant translated features reduces the computation cost
of the classification system. Finally, the proposed T-F fea-
tures can be applied to detect EEG seizures with their degree
of severity (i.e., mild, moderate or severe) and their extraction
can be improved using other QTFDs.

Table 3. Total classification accuracy results for EEG
database {N,S} using the T-F translated and selected fea-
tures, and their original version with multi-class SVM classi-
fier.

Features Total classification accuracy ( % )

{F(t),F(f)} 96.43
{F (t)

2 , F
(t)
8 , F

(f)
2 , F

(f)
5 } 82.14

Features Total classification accuracy ( % )

WVD SWVD CWD MBD SPEC

F(tf) = {F(t),F(f)} 97.14 98.57 97.14 97.14 98.57
{F (tf)

2 , F
(tf)
8 , F

(tf)
11 , F

(tf)
14 } 88.57 88.57 88.57 89.29 89.29

Table 4. Ranking of the T-F translated features based on
the combination of the minimum-redundancy and maximum-
relevance criteria.

WVD SWVD CWD MBD SPEC
Rank Feature Feature Feature Feature Feature

1 F
(tf)
2 F

(tf)
2 F

(tf)
2 F

(tf)
2 F

(tf)
2

2 F
(tf)
8 F

(tf)
16 F

(tf)
8 F

(tf)
8 F

(tf)
8

3 F
(tf)
11 F

(tf)
11 F

(tf)
11 F

(tf)
11 F

(tf)
11

4 F
(tf)
14 F

(tf)
14 F

(tf)
14 F

(tf)
13 F

(tf)
14

5 F
(tf)
12 F

(tf)
12 F

(tf)
12 F

(tf)
14 F

(tf)
12

6 F
(tf)
9 F

(tf)
9 F

(tf)
9 F

(tf)
12 F

(tf)
9

7 F
(tf)
1 F

(tf)
4 F

(tf)
1 F

(tf)
9 F

(tf)
5

8 F
(tf)
15 F

(tf)
1 F

(tf)
5 F

(tf)
1 F

(tf)
1

9 F
(tf)
16 F

(tf)
6 F

(tf)
16 F

(tf)
16 F

(tf)
16

10 F
(tf)
7 F

(tf)
7 F

(tf)
7 F

(tf)
7 F

(tf)
7

11 F
(tf)
6 F

(tf)
8 F

(tf)
6 F

(tf)
6 F

(tf)
6

12 F
(tf)
3 F

(tf)
15 F

(tf)
13 F

(tf)
15 F

(tf)
15

13 F
(tf)
13 F

(tf)
13 F

(tf)
3 F

(tf)
5 F

(tf)
3

14 F
(tf)
5 F

(tf)
5 F

(tf)
15 F

(tf)
10 F

(tf)
10

15 F
(tf)
10 F

(tf)
10 F

(tf)
10 F

(tf)
3 F

(tf)
4

16 F
(tf)
4 F

(tf)
3 F

(tf)
4 F

(tf)
4 F

(tf)
13
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