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ABSTRACT

This paper presents a novel image classification based on decision-
level fusion of EEG and visual features. In the proposed method,
we extract the EEG features from EEG signals recorded while users
stare at images, and the visual features are computed from these im-
ages. Then the classification of images is performed based on Sup-
port Vector Machine (SVM) by separately using the EEG and vi-
sual features. Furthermore, we merge the above classification results
based on Supervised Learning from Multiple Experts to obtain the
final classification result. This method focuses on the classification
accuracy calculated from each classification result. Therefore, al-
though classification accuracy based on EEG and visual features are
different from each other, our method realizes effective integration of
these classification results. In addition, we newly derive a kernelized
version of the method in order to realize more accurate integration
of the classification results. Consequently, our method realizes suc-
cessful multimodal classification of images by the object categories
that they contain.

Index Terms— electroencephalogram, image classification,
multimodal scheme, decision-level fusion.

1. INTRODUCTION

Image classification is an important task for image semantic analysis.
Therefore, various methods which perform classification of images
according to object categories that they contain have intensively been
proposed [1–3].

Generally, most image classification methods try to improve
the performance of visual features and classifiers [2, 3]. In partic-
ular, various local features (e.g., Scale Invariant Feature Transform
(SIFT) [4], Histograms of Oriented Gradients (HOG) [5], etc), have
recently been proposed in order to improve the classification accu-
racy. Furthermore, the bag-of-features (BoF) [6] representation from
these local features becomes one of the most widely used features in
recent years.

Although the classification performance was improved by utiliz-
ing these visual features, the improvement of the classification accu-
racy based on discovery of new visual features tends to be saturated.
Therefore, it is necessary to introduce a new idea such as solving
the problem by multimodal schemes. In this paper, we newly utilize
EEG features for image classification. Thus, we propose a multi-
modal image classification method which utilizes both EEG features
and visual features collaboratively. We previously proposed a multi-
modal estimation method of segments where singing voices exist in
musical pieces [7]. This method realized more accurate estimation
of these segments than the method using only audio features. There-
fore, by using EEG and visual features, more accurate classification

than the method utilizing only visual features can be also expected.
In the proposed method, we first extract the EEG features from

EEG signals recorded while users stare at images and their visual
features. Next, we perform image classification using EEG and
visual features separately to obtain multiple classification results.
In our method, we employ Supervised Learning from Multiple
Experts [8] in order to merge the above classification results, i.e.,
decision-level fusion. Although the linear discriminating function is
adopted in the original classifier [8], we newly derive the kernelized
version of Supervised Learning from Multiple Experts in order to
realize more accurate integration of classification results. Conse-
quently, successful image classification becomes feasible by using
the above non-conventional approach.

2. IMAGE CLASSIFICATION BASED ON
DECISION-LEVEL FUSION

In this section, we explain the proposed method. Our method is
composed of two stages. In the first stage, we extract the EEG fea-
tures from EEG signals recorded while users stare at images, and the
visual features are computed from these images. Then we perform
image classification based on Support Vector Machine (SVM) [9]
by inputting EEG and visual features into the classifiers, separately.
Thus, multiple classification results are obtained. Furthermore, in
the second stage, we employ the kernelized decision-level fusion
approach, i.e., merging the above classification results, considering
their classification accuracy.
2.1. Feature Extraction and Single Feature-Based Image Clas-
sification

In this subsection, we explain the EEG features and the visual fea-
tures used in the proposed method. Furthermore, the single feature-
based image classification method in the first stage is presented.
EEG Feature Extraction
We calculate the EEG features from observed EEG signals and the
power spectrum computed by applying short-time Fourier transform
(STFT) to each channel’s EEG signal. The details are shown below.

First, segmentation of each channel’s EEG signal is performed
at fixed intervals with an overlapped Hamming window. In this
paper, f j( j = 1, 2, · · · , F; F is the total number of EEG segments)
denote EEG segments. Next, we compute the EEG features shown
in Table 1 from each EEG segment. Note that C and P denote the
number of channels of EEG signals and the number of symmetric
electrode pairs placed on the scalp, respectively. Thus, the dimen-
sion of EEG features becomes 6C + 10P. In this table, we calculate
Zero Crossing Rate [10] in the time domain, and the other features
are computed in the frequency domain. The details of EEG features
in our method are shown in [7].
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Table 1. Features used for EEG signals in the proposed method.
Note that C denotes the number of channels of EEG signals and P
shows the number of symmetric electrode pairs placed on the scalp.

EEG Features Num. of Dimension

Zero Crossing Rate C
θ wave (4-7Hz) C

Content percentage of slow-α wave (7-9Hz) C
the power spectrum mid-α wave (9-11Hz) C

slow-α wave (11-13Hz) C
β wave (13Hz-) C
θ wave (4-7Hz) 2P

Power spectrum of slow-α wave (7-9Hz) 2P
the hemispheric asymmetry [11] mid-α wave (9-11Hz) 2P

slow-α wave (11-13Hz) 2P
β wave (13Hz-) 2P

Visual Feature Extraction
We utilize three kinds of visual features: SIFT [4], Pyramid His-
togram of Oriented Gradients (PHOG) [12] and GIST descriptor [13].
SIFT: From each image, 128-dimensional SIFT descriptors are ex-
tracted, and BoF approach is applied to the obtained results to gen-
erate a feature vector xvSIFT (∈ R300).
PHOG: 40 bins of histogram is extracted at each resolution level
l (l = 1, 2, 3), and the dimension of PHOG extracted from an im-
age becomes 3400, where xvPHOG (∈ R3400) denotes the feature vector
obtained by PHOG.
GIST: After 4 × 4 grid segmentation of an image, orientation his-
tograms are extracted from each segment, and the number of bins
of each histogram is 20. Then the dimension of a feature vector ob-
tained by GIST descriptors becomes 360(= 4 × 4 × 20 × 3), where
xvGIST (∈ R360).
Due to the limitation of pages, we only show the above overview of
the visual features. The details can be found in [4], [12] and [13].
Single Feature-Based Image Classification
Next, we explain the method to classify images in the first stage.
First, since relationships between “stimuli to human beings from the
outside” and “which parts of the human brain are affected by these
stimuli” are not well-known, we employ the feature selection in or-
der to obtain EEG feature vectors. This means we reduce the dimen-
sion of the features shown in Table 1 to select only features useful for
the classification. Specifically, we apply the feature selection method
based on Max-Relevance and Min-Redundancy (mRMR) algorithm
proposed in [14] to the EEG features calculated from each segment
in order to obtain an efficient feature set for the classification. After
this procedure, x f j

i ∈ R
d f j (i = 1, 2, · · · ,N; N is the number of images

included in training data; d f j is the number of the selected features
based on mRMR algorithm for EEG segment f j) are obtained as
EEG feature vectors for each EEG segment f j( j = 1, 2, · · · , F). As
for visual feature vectors, we directly use the vectors xvSIFT

i , xvPHOG
i

and xvGIST
i , separately.

In the first stage of the proposed method, we employ SVM as the
classifier to classify images. Although SVM is a two class classifier,
image classification is generally a multi-class problem. Fortunately,
since the two class classification can be easily expanded into multi-
class classification based on one vs. one approach [15] or one vs.
all approach [16], we focus on the improvement of the two class
classification performance.

We train classifiers by separately using EEG feature vectors cal-
culated from each EEG segment and visual feature vectors. This
means multiple classifiers (F + 3 classifiers) are respectively ob-
tained based on EEG features x f1

i ,x
f2
i , · · · ,x

fF
i and visual features

xvSIFT
i ,xvPHOG

i ,xvGIST
i by using each feature vector for training. There-

fore, we can classify images based on EEG and visual features by
inputting feature vectors extracted from test data into each trained

classifier. Finally, F + 3 kinds of classification results are obtained.
2.2. Multiple Feature-Based Image Classification

In this subsection, we explain the method to obtain the final clas-
sification result in the second stage. In the proposed method, we
merge the classification results obtained in the first stage based on
Supervised Learning from Multiple Experts [8] to determine the
final classification result. Whereas a linear discriminating func-
tion is adopted in [8], we newly derive its kernelized version in
the proposed method. Therefore, it is expected that our method
realizes more efficient classification than that of the original model
proposed in [8]. Since this method has come from the research field
of computer-aided diagnosis (CAD), they merge multiple classifi-
cation results from each human annotator, e.g., radiologist. In the
proposed method, we regard the F + 3 classifiers based on EEG
features extracted from each EEG segment and visual features as
F + 3 annotators. In order to merge the multiple classification re-
sults, we focus on the classification accuracy of each annotator and
assign higher weights to classification results of annotators which
have higher classification accuracy. The details of the second stage
are shown below.

2.2.1. Each annotator’s classification accuracy and classification
model

We explain the classification accuracy of each annotator and the
classification model defined in our method. Let y j ∈ {0, 1} be the
label assigned to the feature vector x by annotator j ∈ J , where
J = { f1, f2, · · · , fF , vSIFT, vPHOG, vGIST} is a set of annotators, and f
and v correspond to Frame (EEG segment) and Visual, respectively.
Furthermore, the details of x are shown in the following paragraph.
Given the actual label y ∈ {0, 1}, i.e., ground truth, the classification
accuracy of each annotator, P j

se (sensitivity) and P j
sp (specificity) are

respectively defined as follows:
P j

se := Pr[y j = 1|y = 1], (1)

P j
sp := Pr[y j = 0|y = 0]. (2)

In our method, classification model is specifically written as follows:

fw(x) = w>φ(x). (3)

where w is a weight.
In the second stage of our method, the feature vector x ∈ Rr is

generated by applying the feature selection method based on mRMR
algorithm to the EEG features obtained by calculating the average
and standard deviation of each feature from all EEG segments
( f1, f2, · · · , fF) and all visual features calculated in the previous
subsection (2.1). This means r-dimensional features are selected
by mRMR algorithm from (300 + 3400 + 360 + 2 × (6C + 10P))-
dimensional features. In Eq. (3), φ(x) ∈ Rr′ (r′ � r) is obtained by
mapping the feature vector x into a high-dimensional feature space.
The final classification result ŷ is obtained as follows:

ŷ =

1 fw(x) ≥ Th
0 otherwise,

(4)

where Th is a predetermined threshold. Given the training datasetD
consisting of N feature vectors xi ∈ Rr(i = 1, 2, · · · ,N), a weight w
is specifically written as follows:

w =
N∑

i=1

αiφ(xi)

= Ξα, (5)
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where Ξ = [φ(x1),φ(x2), · · · ,φ(xN)] and α = [α1, α2, · · · , αN]>.
Therefore, by using α in Eq. (5), the discriminating function in
Eq. (3) is rewritten as follows:

fw(x) = w>φ(x)

=

N∑
i=1

αik (xi,x) , (6)

where k(·, ·) is a kernel function of φ(·), and we specifically em-
ploy the Gaussian kernel. In order to determine the discriminating
function fw(·), we have to obtain the coefficients αi(i = 1, 2, · · · ,N)
from training data by using each annotator’s classification accuracy
defined in Eqs. (1) and (2). The details are shown below.

2.2.2. Training Phase

Given the training data D consisting of N feature vectors with
the classification results by F + 3 annotators and their actual la-
bels, D = {yi,φ(xi), y

f1
i , y

f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i }Ni=1, where

yi is the actual label, the estimation target is the coefficients
αi (i = 1, 2, · · · ,N) in Eq. (6). From the training data D, the
likelihood of the coefficient vector α is defined as:

Pr [D|α] =
N∏

i=1

Pr
[
y f1

i , y
f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |φ(xi),α

]
.

(7)
By using the values of sensitivity Pse = {P j

se| j ∈ J} obtained from
each annotator and those of specificity Psp = {P j

sp| j ∈ J}, the above
equation is rewritten as follows:

Pr[D|α]

=

N∏
i=1

{
Pr[y f1

i , y
f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 1, Pse]

× Pr[yi = 1|φ(xi),α]

+ Pr[y f1
i , y

f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 0, Psp]

× Pr[yi = 0|φ(xi),α]
}
. (8)

If it is assumed that each annotator j ∈ J is independent each other,
Pr[y f1

i , y
f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 1,Pse] can be rewritten

as follows:

Pr[y f1
i , y

f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 1, Pse]

=
∏
j∈J

[P j
se]

y j
i [1 − P j

se]
1−y j

i . (9)

Similarly, Pr[y f1
i , y

f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 0, Psp] can be

rewritten as follows:
Pr[y f1

i , y
f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 0, Psp]

=
∏
j∈J

[P j
sp]1−y j

i [1 − P j
sp]y j

i . (10)

Then the likelihood in Eq. (8) is rewritten as

Pr[D|α] =
N∏

i=1

[ai pi + bi(1 − pi)]. (11)

Note that
pi = Pr[yi = 1|φ(xi),α]

=
1

1 + exp(−α>ki)
, (12)

where ki = [k(x1,xi), k(x2,xi), · · · , k(xN ,xi)]>, and

ai =
∏
j∈J

[P j
se]

y j
i [1 − P j

se]
1−y j

i , (13)

bi =
∏
j∈J

[P j
sp]1−y j

i [1 − P j
sp]y j

i . (14)

The maximum-likelihood estimator is found by maximizing the fol-
lowing log-likelihood:

α̂ML = arg max
α

{
lnPr[D|α]

}
. (15)

Let y = [y1, · · · , yN] be the set of the actual labels, and the complete
data log-likelihood can be written as

lnPr[D,y|α] =
N∑

i=1

{
yilnpiai + (1 − yi)ln(1 − pi)bi

}
. (16)

In order to maximize this likelihood, the following Expectation-
Maximization (EM) algorithm [17] is adopted.
E-step
In the E-step, when the training data D and the current estimate of
the coefficient vector α are given, the conditional expected value of
log-likelihood is computed as follows:

E
{
lnPr[D,y|α]

}
=

N∑
i=1

{
µilnpiai + (1 − µi)ln(1 − pi)bi

}
, (17)

where µi is computed as follows:
µi ∝ Pr[y f1

i , y
f2
i , · · · , y

fF
i , y

vSIFT
i , yvPHOG

i , yvGIST
i |yi = 1,α]

× Pr[yi = 1|φ(xi),α]

=
ai pi

ai pi + bi(1 − pi)
. (18)

M-step
In the M-step, based on the current estimate µi and the train-
ing data D, the coefficient vector α is estimated by maximiz-
ing the conditional expected value in Eq. (17). Specifically,
we obtain the estimated coefficient vector α by solving equation
∂
∂α
{lnPr[D,y|α]} = 0.

α← α − ηH−1g. (19)

In Eq. (19), g is a gradient vector, H is a Hessian matrix and η is
a step length. The gradient vector g and the Hessian matrix H are
respectively computed as follows:

g =
N∑

i=1

[µi − σ(α>ki)]ki, (20)

H = −
N∑

i=1

[σ(α>ki)][1 − σ(α>ki)]kik
>
i , (21)

where σ(α>ki) = 1
1+exp(−α>ki)

.

2.2.3. Testing Phase

Give the test data, the final classification result can be obtained as
follows. In the previous phase, we essentially solved a regular logis-
tic regression problem with probabilistic labels µi. Thus, we obtain
the final classification result by applying a threshold to µ calculated
from a test data {φ(x), y f1 , y f2 , · · · , y fF , yvSIFT , yvPHOG , yvGIST }, where
its label y is unknown, instead of directly using α. The value of µ is
computed by using the estimated coefficient vector α and a, b cal-
culated from the training data. Specifically, p = 1

1+exp(−α>k) is calcu-
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Table 2. Classification accuracy: As for the results of only visual features, since we utilize the same images, these values do not depend on
each subject.

Only Visual Features Only EEG Features Proposed Method
SIFT PHOG GIST subject A subject B subject C subject A subject B subject C

panda 78 ± 0.2% 72 ± 0.2% 76 ± 0.2% 60 ± 0.3% 64 ± 0.2% 68 ± 0.2% 80 ± 0.2% 82 ± 0.2% 78 ± 0.2%
soccer ball 76 ± 0.2% 72 ± 0.3% 62 ± 0.1% 52 ± 0.2% 70 ± 0.2% 68 ± 0.2% 78 ± 0.2% 82 ± 0.2% 76 ± 0.2%
strawberry 66 ± 0.2% 58 ± 0.2% 66 ± 0.2% 62 ± 0.1% 74 ± 0.2% 46 ± 0.2% 92 ± 0.1% 88 ± 0.2% 86 ± 0.2%

Ave. 73 ± 0.05% 67 ± 0.07% 68 ± 0.06% 58 ± 0.04% 69 ± 0.04% 61 ± 0.10% 83 ± 0.06% 84 ± 0.03% 80 ± 0.04%

lated, where k = [k(x1,x), k(x2,x), · · · , k(xN ,x)]>. Furthermore,
a =
∏

j∈J [P j
se]y j

[1 − P j
se]1−y j

and b =
∏

j∈J [P j
sp]1−y j

[1 − P j
sp]y j

are
obtained, where P j

se and P j
sp are accuracy of annotator j calculated

from training data and y j is classification result of the test data.
Therefore, we obtain the final classification result considering each
annotator’s accuracy. Then µ = ap

ap+b(1−p) is computed by using p, a
and b. Finally, we obtain the final classification result as follows:

y =

1 µ ≥ γ
0 otherwise,

(22)

where γ is a predetermined threshold. The value of µ is the posterior
probability.

3. EXPERIMENTAL RESULTS

In this section, we show experimental results to verify the effective-
ness of the proposed method. First, we explain EEG signal collection
and the experimental procedures in 3.1. Furthermore, the results of
image classification are shown in 3.2.

3.1. EEG Signal Collection and Experimental Procedures

In this subsection, we first explain how to collect EEG signals in this
experiment. In this study, three healthy subjects participated, and
EEG recordings were conducted during staring at images. The age
of each subject was 22 or 23 years old. We recorded EEG signals
from 12 channels (Fp1, Fp2, F7, F8, T3, T4, C3, C4, P3, P4, O1 and
O2) according to the international 10-20 system. All leads were ref-
erenced to linked earlobes, and a ground electrode was located in the
forehead. Since EEG signals are weak, we amplified these signals
by using an amplifier (MEG-6116M, NIHON KOHDEN). We also
applied a band-pass filter to recorded EEG signals to avoid artifacts,
and set the filter bandwidth to 0.04-30Hz. and the sampling rate is
2kHz. Each subject stared at images displayed on a monitor. Dur-
ing experiment, subject sat comfortably on a chair and kept relaxing.
Subjects were instructed that they stared at images without blinking.

We collected EEG signals while subjects stared at various kinds
of images. In order to recognize the objects in images easily, we
let subjects know what kinds of categories are used for this experi-
ment. Specifically, we presented each subject the two kinds of im-
ages which are used for image classification (target images) and not
used for the classification (non-target images) sequentially. In addi-
tion, EEG signals were recorded while subjects performed the task
in a scheme similar to an oddball paradigm. The number of times
each subject performed the task was the same as the number of tar-
get image categories. The time length of staring at each image was
three seconds. Three second silence was inserted between every two
images to remove the effect of a previous image. In this experiment,
we performed image classification by using EEG signals recorded
while subjects were staring at target images. In addition, we set the
time length of an EEG segment and an overlapping to 100ms and
50ms, respectively.

3.2. Experimental Results

In this subsection, we show the experimental results in order to ver-
ify the performance of the proposed method. In this experiment,
we utilized Caltech101 dataset [18]. This dataset consists of images
from 101 categories. The significance of this database is its large
inter-class variability. Specifically, we used the images included in
“panda”, “soccer ball” and “strawberry” in the database as the tar-
get images, and the number of images was 35 per category. These
images were randomly selected in advance. We also used the im-
ages included in “airplane”, “elephant”, “joshua tree”, “pyramid”
and “stapler” in the same database for the non-target images.

In this experiment, we performed the multi-class classification
of images by the object categories that they contain based on one
vs. all approach [16]. Therefore, the final classification was de-
termined according to the posterior probability obtained from the
testing phase (2.2.3). We followed [2, 3] for our experimental setup.
Specifically, we randomly selected 30 training images per class and
test on the remaining images. Then we calculated the classification
accuracy which was normalized according to the number of test im-
ages per class. We repeated the random selection 10 times and show
the average classification accuracy per class.

We show the results of image classification in Table 2. In this
table, we also show the results of the comparative methods. From
the obtained results, the proposed method realizes the most accu-
rate classification. Therefore, the effectiveness of our method can be
verified. In Table 2, the most significant improvement of classifica-
tion performance by only using visual features is 6% (67% to 73%).
However, the classification accuracy based on the proposed method,
which utilizes both EEG features and visual features, is higher than
that of SIFT, which is the highest classification accuracy in only vi-
sual features, by average 9%. Therefore, our multimodal approach
is more effective than the improvement of visual features. In addi-
tion, while only subject B’s classification accuracy based on only
EEG features is higher than the accuracy of PHOG and GIST, our
method realizes accurate classification for all subjects. Therefore,
the effectiveness of the proposed method can be verified.

4. CONCLUSION

In this paper, we have proposed a novel image classification. Our
method realized the improvement of the classification performance
based on decision-level fusion of EEG and visual features. Experi-
mental results show the effectiveness of the proposed method.
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