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ABSTRACT

Detecting movement intentions from Electroencephalography
(EEG) signals and extracting intended kinetic information
such as force and speed may have implications for rehabili-
tation with assistive technologies by casually linking afferent
feedback from the assistive device with the cortical generated
movement potentials. However, extraction and classification
of kinetics from the ‘movement intention’ (before task onset)
on a single-trial basis have only been performed with limited
performance due to low signal-to-noise ratio and large trial-
to-trial variability. The aim of this study was to investigate a
covariate shift method to address the basic challenge of non-
stationarity (changes from session to session and trial-to-trial
variability) for decoding different levels of speed and force.
We tested this method using cross-validation procedures and
a linear support vector machine to classify temporal features
associated with two levels of force and speed in 9 subjects.
The classification accuracy obtained across different class
pairs across subjects was 73.1± 6.8 % and 70.0± 3.6 % with
and without the covariate shift method, respectively. The
classification accuracy was significantly higher (p < 0.03)
using the covariate shift method.

Index Terms— Covariate shift, movement-related corti-
cal potentials, brain-computer interface, speed, force.

1. INTRODUCTION

In the last decade brain-controlled devices, commonly known
as brain-computer interfaces (BCIs), have emerged as an
augmentative tool for rehabilitation to improve or restore
the ability of movement-impaired individuals [1]. It has
been reported that coincident activation of the brain from
somatosensory feedback (from a single pulse electrical stim-
ulation) and motor imagination can promote plastic changes
associated with those seen in motor relearning [2] for differ-
ent patient groups e.g. stroke. This idea was implemented
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as a BCI by detecting the movement intention of movement-
related cortical potential (MRCP) that triggered electrical
stimulation [3]. Instead of triggering a single pulse electrical
stimulation, the detection of the movement intention can trig-
ger functional electrical stimulation or a robotic device that
can replicate a certain movement. However, to replicate the
intended movement information about speed and force must
be extracted before task onset, and in this way correct afferent
feedback can be provided by the assistive device according
to the movement intention. This will close the motor control
loop and provide the BCI with more degrees of freedom that
can be used to introduce variable training that can maximize
the retention of re-learned movements during rehabilitation
of stroke patients [4]. Extracting different levels of speed and
force from movements intentions have been done previously
e.g. [5, 6, 7] by using the marginal distribution of the dis-
crete wavelet transform and from temporal features. These
were classified with support vector machines (SVMs) with
optimized Gaussian kernels.

The extraction of the kinetic information from a limb is
impeded by the inherent problem of non-stationarity in EEG
signals. This is a big hindrance in the robustness of BCI
systems which can be used for rehabilitation. This problem
even becomes more challenging if a less number of elec-
trodes is used, which would be desirable for a quick EEG
setup in a clinical setting. The factors contributing to the non-
stationarity of EEG data are changes in user attention level
during sessions, fatigue and differences in the impedance of
electrode due to their positioning. Hence, the EEG distribu-
tions change from one session to another and even within a
single session illustrating the non-stationarity of the data [8].

However, in standard supervised machine learning algo-
rithms the prior probability (p(x)) is assumed to remain the
same during the training and testing phase. The situation
where the prior probability changes between training and test-
ing is called covariate shift [9]. In this situation, an adaptive
BCI system can be designed in a way, so that it can adjust
itself in case there is a shift in the data. In a previous study,
the covariate shift has been applied for a two-class problem
(discrimination between a movement or an idle state) using
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event related synchronization in the beta band which appear
after termination of the movement [10]. In this paper, only
time domain features from the movement intention are ex-
tracted to classify force and speed into different levels. The
features are classified with an SVM classifier with a linear
kernel. The aim of this study was to compare the perfor-
mance of the SVMs with and without the use the covariate
shift method.

2. METHODOLOGY

2.1. Subjects

Nine healthy subjects (1 female and 8 males 29± 6 years old)
participated in this study. A informed consent was taken from
all the subjects before participation. The procedures were ap-
proved by the local ethical committee (N-20100067).

2.2. Experimental Protocol

Subjects were seated in a chair with their right foot fixated
to a pedal where a force transducer was attached. They
were instructed to perform maximum voluntary contrac-
tions (MVCs) followed by four different tasks of real isomet-
ric dorsi-flexions of the right ankle: i) 0.5 s to reach 20 %
MVC (f20) ii) 0.5 s to reach 60 % MVC (f60), iii) 3 s to
reach 20 % MVC (s20) and iv) 3 s to reach 60 % MVC (s60).
A custom made program called Follow Me by Knud Larsen,
Aalborg University, was used to assist the subjects cues to
perform the movements with correct level of force and speed
by providing cues. The subjects were instructed to follow
a particular force trace (see Fig: 1). They received visual
feedback of their performance during the experiment. Each
of the four tasks was repeated 50 times in blocks which were
randomized.

2.3. Signal Acquisition

EEG

Only ten channels of monopolar EEG were continuously
recorded using scalp electrodes with a sampling rate of
500Hz. The 20 mm Blue Sensor Ag/AgCl, AMBU A/S,
Denmark electrodes were placed on the scalp according to
the international 10-20 system at FP1, F3, F4, Fz, C3, C4, Cz,
P3, P4 and Pz locations. The reference and ground electrodes
were placed on the right earlobe and at nasion, respectively.
The EEG was divided into epochs using a trigger that was
sent from Follow Me at the beginning of each trial (at the
beginning of the preparation phase in Fig. 1) to the EEG
amplifier. FP1 was used to record EOG activity.

Force and MVC

The recordings for force were made using Mr. Kick (Knud
Larsen, SMI, Aalborg University) and used as input to Fol-
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Fig. 1. The subjects had to prepare for 3 s after which they
started the execution of the movement. The execution phase
lasted either 0.5 or 3 s. When they reached the desired force
level (20 or 60 % MVC) they maintained the contraction for
0.5 s followed by a rest period.

low Me. The force was sampled at 2000 Hz. A total of three
MVCs were recorded with a rest of one minute from one con-
traction to another. The MVC having the highest value was
used.

Pre-processing

A 2nd order Buttorworth filter was used to bandpass filter the
EEG signal from 0.05 to 10 Hz and spatially filtered with a
Large Laplacian spatial filter.

2.4. Classification of Movements

Feature extraction

Epochs having EOG activity greater than 125 µV were re-
jected (≈6 per task). The single-trial movement intentions
(2000–100 ms before the task onset) were used to extract six
temporal features to predict the intended movement type. The
following features were extracted: i) point of max. negativity,
ii) mean value of amplitude, iii) and iv) slope and intersec-
tion of a linear regression using data from the entire interval,
v) and vi) slope and intersection between 500–100 ms of a
linear regression before the task onset (see Fig. 2).

Covariate shift

Under the conditions of covariate shift, the prior probability
p(x) changes between the training and testing data where the
data is assumed to be generated by the model p(y|x)p(x). In
this situation, the training data will not accurately represent
the statistics of the test data. In the case of covariate shift in
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Fig. 2. Average of the four tasks for subject 1. ‘Fast’ and
‘Slow’ refers to 0.5 s and 0.3 s respectively, to reach the de-
sired level of MVC, where ‘0’ is the task onset and ‘n’ is the
number of trials in the average.

the data, we would like to assign more weight to those train-
ing samples that give the most information about the test data.
The goal is to estimate importance weights (IWs) from train-
ing (xtri ) and test samples (xtei ) such that:

β(x) = pte(x)/ptr(x) (1)

where β(x) are the IWs. By using these IWs to weight the
training data, we push the learning algorithm towards those
training samples that give best representation of the test data.

However, estimating the probability distributions for mul-
tidimensional data is always a challenge. In this paper, we
propose to use Gaussian kernels to transform the input data
into high dimensional space. Kernel mean matching (KMM)
method proposed by A. Gretton et.al [11] is used to minimise
the difference between the training and testing data distribu-
tions in the transformed domain. The objective function (J) is
given by the difference of the two empirical means of training
(ntr) and testing (nte) data samples:

J(β) = min
β

∣∣∣∣∣∣ 1
ntr

∑ntr

i=1 βiΦ(xtri )− 1
nte

∑nte

i=1 Φ(xtei )
∣∣∣∣∣∣2(2)

subject to βi ∈ [0, B] and
∣∣∣ 1
ntr

∑ntr

i=1 βi − 1
∣∣∣ ≤ ε,

where B > 0 and ε > 0 are tuning parameters and Φ is the
Gaussian basis function. The objective function can be ex-
panded into a quadratic programming problem to find suitable
β as:

min
β

1
2β

TKβ − κTβ, (3)

subject to βi ∈ [0, B] and |
∑ntr

i=1 βi − ntr| ≤ ntrε,

where Kij = k
(
xtri , x

tr
j

)
and κi = ntr

nte

∑nte

j=1 k
(
xtri , x

te
j

)
and k is the Gaussian kernel mapping function. In this pa-
per, we have used the following values of Gaussian kernel

width σ = 0.1, B = 1000, and ε = (
√
ntr − 1/

√
ntr) for

calculating the IWs.

Importance Weighted Support Vector Machines

After calculating the IWs, the next step is to incorporate them
into a machine learning algorithm. For our problem, we have
used the standard SVMs as the machine learning algorithm
because on the complexity and performance scale, they are
considered to be optimal. The standard form of soft margin
SVMs is:

max
α

∑n
i=1 αi −

1
2α

THα (4)

such that 0 ≤ αi ≤ C and
∑n
i=1 αiyi = 0,

where αi are the Lagrange multipliers, Hi,j ≡ yiyj〈xi, xj〉
and C is the penalty factor for misclassification for n number
of training samples. By incorporating the IWs into the SVM,
the importance weighted SVM (IWSVM) looks like:

max
α

∑n
i=1 αi −

1
2α

THα (5)

such that 0 ≤ αi ≤ βiC and
∑n
i=1 αiyi = 0.

For complete mathematical and algorithmic details of IWSVMs,
readers are referred to [12]. The only difference between the
standard SVM and IWSVM is the limit on the Lagrange mul-
tipliers (αi). This IWSVM is going to adapt the decision
boundary to consider the IWs calculated from the training
and testing data. This type of SVMs should perform better
than a standard SVMs if there exists a data shift in the input
data.

3. RESULTS

The 3-fold cross-validation was used to calculate the classi-
fication accuracy of each task pair(fast 20% MVC (f20) ver-
sus fast 60% MVC (f60) etc.). The results are presented in
Fig. 3. The best performance was obtained when the linear
SVM was used in combination with covariate shift methodol-
ogy for f60-s60 class pair (79.3 ± 8.7%). On average across
the subjects and the six task pairs linear SVM with covariate
shift methods gave classification accuracy of 73.1 ± 6.8%),
whereas linear SVM without the covariate shift method gave
70.0 ± 3.6% of classification accuracy. A two-way analy-
sis of variance (ANOVA) with factors methods (linear SVM
with and without covariate shift) and six class pairs (f20-f60,
f20-s20, f20-s60, f60-s20, f60-s60, and s20-s60) showed sig-
nificance improvement (F (1, 8) = 6.27, p < 0.03).

4. DISCUSSIONS

In this paper, we have proposed to use covariate shift to deal
with the non-stationarity of EEG signals from one session to

5897



0 

0.2 

0.4 

0.6 

0.8 

1 

f20-f60 f20-s20 f20-s60 f60-s20 f60-s60 s20-s60 

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y 

Linear SVM with covariate shift method 
Linear SVM without  covariate shift method 

Fig. 3. The columns represents the average (across subjects)
classification performance of the SVMs with (dark shade) and
without (light shade) covariate shift method for all combina-
tions of the task pairs. The standard deviations are indicated
in the figure.

another to classify different movement kinetics before the on-
set of the task. Any BCI system capable of classifying move-
ment kinetics, with short latency with respect to the onset
of a task can be used as a neuromodulatory system [2] and
could potentially be used to drive an external augmentative
device (robot assisted movements) for restoring or improv-
ing the motor functions for stroke patients. As proposed by
Mrachacz-Kersting et. al. [2], plasticity can be induced within
the human motor cortex if an artificially generated signal (pe-
ripheral electrical stimulation) can coincide with a physio-
logically generated signal (movement intention). The exper-
imental results presented in this paper show that by using a
very simple classifier (linear kernel SVM), we can deal with
the non-stationarity of EEG signals achieving significant im-
provement (p < 0.03) in classification accuracy over a stan-
dard method. The classification accuracies of self-paced neu-
romodulatory BCI systems have been found to be positively
correlated with excitability of the corticospinal projections of
the target muscle [3].

It is a known fact that the neural signals generated in self-
paced scenarios are different compared to those obtained in
cue based scenarios [13]. In this paper, the level of force
and speed was precisely controlled across subjects using a
cue based system. One of the issues with KMM methodol-
ogy used in this paper is that it requires the testing data to
be available before the IWs can be calculated. Therefore,
data recorded from previous sessions can be used to train the
IWSVMs. In future, we would like to make covariate shift
methods incremental and adaptive to make them directly ap-
plicable to online BCI systems.
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