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ABSTRACT

This work deals with an adaptive and localized time-fre-

quency representation of time-series signals based on ratio-

nal functions. The proposed rational Discrete Short Time

Fourier Transform (DSTFT) is used for extracting discrim-

inative features in EEG data. We take the advantages of

bagging ensemble learning and Alternating Decision Tree

(ADTree) classifier to detect the seizure segments in pres-

ence of seizure-free segments. The effectiveness of different

rational systems is compared with the classical Short Time

Fourier Transform (STFT). The comparative study demon-

strates that Malmquist–Takenaka rational system outperforms

STFT while it can provide a tunable time-frequency represen-

tation of the EEG signals and less Mean Square Error (MSE)

in the inverse transform.

Index Terms— EEG time series, seizure classification,

rational functions, Malmquist–Takenaka system.

1. INTRODUCTION

In the last decade, a wide range of signal processing and

machine learning algorithms have been adapted to be em-

ployed in seizure detection and EEG classification. In gen-

eral, achieving discriminative features, in the time and/or fre-

quency domains, which can describe epileptic seizure pat-

terns, is the most important part of the epileptic seizure detec-

tion. Continuous and discrete Wavelet transform provide a si-

multaneous representation in time/frequency domains which

is a powerful tool for analysis of non-stationary EEG sig-

nal. Wavelet based methods are mostly used to decompose

the EEG signal into frequency sub-bands. As an alternate and

a special case to Short Time Fourier transform (STFT), Gabor

transform has been employed in epileptic seizure analysis. In

[1], the usage of Gabor transform and Frequency Band Rel-

ative Intensity Ratio (FBRIR) are explored in describing the

EEG signal patterns during ictal epileptic discharge. A filter

bank consisting of a number of Gabor filters, with different

parameters such as orientations and central frequencies, was
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used to detect the seizure and non-seizure epochs in a system

which takes the advantages of both scalp EEG and electrocar-

diography (ECG) to improve the information extraction [2].

The rational functions were efficiently used to represent

one period of an electrocardiograph [3, 4]. Furthermore,

these systems were successfully applied for modeling the

QRS complex [5] and for compressing the heart beats as well.

In the present work, we are taking advantage of the former

experience on ECG signals and we propose an EEG model

based on rational functions. Additionally, we use the rational

system as a competitive to STFT for representation of the

EEG signal in time-frequency domain. Finally, we provide a

feature extraction technique for seizure classification.

2. RATIONAL FUNCTIONS

In this section we give a brief introduction about the the-

ory of rational functions. So let C stand for the set of com-

plex numbers, D := { z ∈ C : |z| < 1 } for the open unit

disc, N := { 1, 2, 3, . . . } for the set of natural numbers, and

T := { z ∈ C : |z| = 1 } for the unit circle (or torus).

Consider the series with different elements a0, . . . , an ∈
D and the sequence m0, . . . ,mn ∈ N called poles and mul-

tiplicities. Then, the modified rational functions (MRF) are

defined as follows

ϕk,i(z) =
zi−1

(1− akz)i
(k = 0, . . . , n, i = 1, . . . ,mk) .

The parameter ak is referred to as inverse pole (because 1/ak
is a pole in the standard sense), i is said to be the order of the

basic function. Using a terminology similar to the trigono-

metric case, the value i = 1 corresponds to the fundamental

tone and i > 1 the overtones.

The corresponding biorthogonal rational functions [6] and

the so-called Malmquist-Takenaka (MT) system [7] are

Ψk,i(z) =
Ωkn(z)(z − ak)

i−1

Ωkn(ak)

mk−i
∑

s=0

ω
(s)
kn (ak)

s!
(z − ak)

s ,

Φk(z) =

√

1− |ak|
2

1− akz

k−1
∏

j=0

z − aj
1− ajz

, (z ∈ C \ { 1/aj }) ,
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where

Ωkn(z) =
1

(1− akz)mk

n
∏

i=0,i 6=k

(

z − ai
1− aiz

)mi

,

ωkn(z) =
Ωkn(ak)

Ωkn(z)
,

with 0 ≤ k ≤ n and 1 ≤ i ≤ mk. The systems above are

biorthogonal and orthogonal with respect to the scalar prod-

uct of the Hardy space 〈F,G〉 = 1
2π

∫ π

−π
F (eit)G(eit) dt

for F,G ∈ H2(D) . Additionally, we note that the MT and

the biorthogonal systems Φ and Ψ with the modified ratio-

nal functions ϕ are referred as the rational orthogonal basis

(ROB) in the literature (see e.g., Heuberger et al. [7]).

3. GENERALIZED SHORT TIME FOURIER

TRANSFORM

Fourier transform is a well-known tool for analyzing the

frequency distribution of a signal. Unfortunately, the time in-

formation has been lost during this transformation. On the

other hand, several techniques like short time Fourier trans-

form (STFT), Cohen’s class distributions, Wavelets, etc. are

attempted to solve this problem.

Let us denote the uniformly sampled f(t) and g(t) func-

tions by f [n] and g[n]. Then the discrete (D) STFT over a

compactly supported g window function can be written as

Fgf [n, k] =

M−1
∑

m=0

f [n−m]g[m]ǫk[m] , (1)

where ǫk[m] = e−2πm k

N , M is the window length of g and

N is the number of samples in f . This algorithm can be in-

terpreted as a successive evaluation of Fourier transforms over

short segments of the whole signal. Additionally, the frequen-

cies can be visually represented by displaying the squared

magnitude of the Fourier coefficients at each section. This

diagram is called as the spectrogram of the signal f.
Using the same terminology as in Eq. (1) we can define a

similar representation of the signal by replacing the trigono-

metric bases ǫk with the elements of the ROB. More precisely,

let us consider a single pole a0 with multiplicity m0 = M ,

and an f ∈ H2(D)) uniformly sampled function. Then the

generalized rational DSTFT can be written as

RφFg
f [n, k] =

M−1
∑

m=0

f [n−m]g[m]φk[m] , (2)

where φk[m] = Φk(e
−2π m

M ), but ψk[m] = Ψ0,k+1(e
−2π m

M )
or ϕk[m] = ϕ0,k+1(e

−2π m

M ) can also be used. The related

inverse transforms can be written in a similar form

f [n−m] ≈
1

g[m]

N−1
∑

k=0

RφFg
f [n, k]φk[m] . (3)

This procedure can also be interpreted as a windowed Fourier

transform, but now we are using a different basis. In addi-

tion, if a0 = 0 then ϕk[m] = φk[m] = ǫk[m] so we get

back the ordinary DSTFT as a special case. We note that the

≈ token was used in Eq. (3). The main reason behind that

there are no proper inversion formulas for the these kinds of

rational systems at the uniform discretization of the unit disc.

On the other hand, a perfect reconstruction is also possible if

we resample the original signal f at an appropriate nonuni-

form discrete grid. For further details we refer to the proof of

Theorem 2 in [6].

As a consequence of the formulas in Eqs. (2) (3) and since

these are orthogonal and biorthogonal projections onto the

k dimensional subspaces of H2(D) the following statements

hold

M−1
∑

k=0

(f [n−m]g[m])2 =

M−1
∑

k=0

RψFg
f [n, k]RϕFg

f [n, k] ,

M−1
∑

k=0

(f [n−m]g[m])2 =

M−1
∑

k=0

∣

∣

∣
RφFg

f [n, k]
∣

∣

∣

2

,

for the related nonuniform discretization [8, 9]. It can be

interpreted as the Parseval’s formula of this transformation.

Hence, it means that the energy of the windowed and the

transformed signal are equal, so we have the same property

as in the case of ordinary DSTFT.

Now, the generalized rational DSTFT spectrogram can

be easily computed for the functions f ∈ H2(D)) by us-

ing Eq. (2). Unfortunately, most of the real signals are the

elements of L2(D)) instead of H2(D). Nevertheless, we

can handle this issue by using the analytic representation

of real signals. Namely, we should compute the function

F = f + iHf where H denotes the well-known Hilbert

transformation. For instance the hilbert command can

evaluate F in MATLAB and then the generalized rational

DSTFT can be applied on F. Moreover, the coefficients and

the expansions in Eqs. (2) (3) can be easily calculated by

using the biort coeffs and the mt coeffs commands

of the RAIT MATLAB toolbox [10].

4. FEATURE EXTRACTION USING RATIONAL

DSTFT

4.1. Dataset

EEG database provided by University of Bonn [11] is

used in this study. The EEG database consists of five sets (A-

E). Each set contains 100 segments of single channel EEG

with length of 23.6s selected from multi-channel EEGs. Sets

A and B have been recorded using the standard international

10-20 system for surface EEG recording. Five healthy volun-

teers were participated in these tests with eyes open and eyes

closed in (A) and (B), respectively. For sets C, D and E five

epileptic patients were selected for presurgical evaluation of
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Fig. 1. Spectrogram of sets A to E for different selection of

poles, First row) rational DSTFT spectra for pole (0.1+0.1i),
Second row) rational DSTFT spectra for pole (−0.07+0.05i),
third row) STFT spectra.

epilepsy patients using intracranial electrodes. In sets C and

D, segments contain inter-ictal intervals while seizure activi-

ties occur in segments of set E. Each segment was sampled at

173.61 Hz resulting in 4096 samples.

4.2. Rational DSTFT coefficients

In the present work, we will apply the generalized rational

DSTFT to EEG time-series. To comprise between compact-

ness and time-frequency resolution, we represent each sec-

ond of EEG time-series using 16 coefficients of MT rational

DSTFT. To extract features from the rational DSTFT repre-

sentation of the signal, we consider the absolute value of each

coefficient. Furthermore, we add five statistical values to our

feature vector which are extracted for each 1s long segment

as follows: a) absolute mean value of coefficients; b) abso-

lute median value of coefficients; c) absolute maximum value

of coefficients; d) absolute minimum value of coefficients; e)

absolute standard deviation value of coefficients. Hence, for

each segment containing 1 second of the EEG time-series we

obtain a feature vector with 21 feature elements. Fig. 1 shows

the STFT and the rational DSTFT spectra for sets A, B, C, D

and E by using two different poles. One can see that, as the

pole tends closer to zero, the frequency response of rational

DSTFT becomes more similar to the classical STFT.

5. CLASSIFICATION

To evaluate the efficiency and robustness of the proposed

feature extraction method, we consider three different classi-

fication tasks. We mainly investigate seizure classification in

the presence of seizure-free segments. The three classifica-

tion tasks are: 1) classification of set E in the presence of set

A (E - A); 2) classification of set E in the presence of sets A

and C (E - A, C); 3) classification of set E in the presence of

sets A, B, C and D (E - A, B, C, D).

In all of these tasks we use Alternating Decision Trees

(ADTrees) as the base classifier [12]. ADTress are similar to

option trees [13] which try to improve the boosting approach

in order to achieve better classification result in comparison

with a single tree.

5.1. Impact of the pole and the estimated coefficients

To analyze the impact of the position of the pole, we com-

pare the classification results of the A-E problem for a set

of poles chosen inside a 20 × 20 grid of the unit circle. We

used 75% of each dataset as the training set and the remaining

25% as the test set. In this experiment, we extract MRF co-

efficients and use ADTree as the classifier. According to our

experiments, by moving away from the center of the Carte-

sian grid (i.e., increasing the absolute value of the pole), there

are some zero coefficients in the rational DSTFT. This phe-

nomena is caused by the terms in Eq. (2) as they represent

higher frequencies while the poles tend closer to the torus.

These zero coefficients can reduce the accuracy of the A-E

classification task up to 6%. However, we found that the clas-

sification accuracy is similar to STFT for the poles which are

close enough to the center (i.e., |a0| ≤ 0.07). This can be

seen on Fig. 2 where the classification results have been dis-

played at each pole. One can see that the classification results

are similar near the zero pole. Moreover, we get exactly the

same numbers for all property at the pole (−0.1+0.1i). This

behavior is a trivial consequence of the fact that the ratio-

nal DSTFT is equal to the STFT for a0 = 0. On the other

hand, stepping away from zero can degrade the results by in-

troducing more zero coefficients to the rational expansion. All

the rational function systems defined in Section 2 share this

property because they span the same subspaces of H2(D).
For this reason, we decided not to fix the pole for the whole

signal. More precisely, an optimal pole was chosen by us-

ing the well-known particle swarm optimization (PSO) algo-

rithm [14, 15] to minimize the mean square error of the recon-

structed signal. Taking advantage of this adaptive behavior of

the rational function systems the error of the projection can

be minimized. The purpose of the optimization procedure is

to make a compact representation of each segment. Conse-

quently, the coefficients can carry more information and they

can be used as a feature. Precisely, the rational systems can be

varied from segment to segment in contrast with the uniform

representations such as STFT or even the Wavelets where the

shapes of the base functions are fixed for all the segments. By

this reason, we expect an improvement of the classification

algorithms based on the classical STFT.

5.2. Bagged ADTree

In this section, we try to reduce the impact of the zero

coefficients using ensemble learning. Though, ADTrees
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Fig. 2. Classification results according to each pole.

naturally perform a boosting ensemble learning algorithm,

but here we also use bootstrap replicates to drawn different

chunks from the original training set. The bagging is repeated

k times to produce k bootstrap samples from the original one.

At each time, the ADTree is trained with the kth bootstrap

sample. A simple voting system at the end will decide which

pattern indicates the majority of the results, then the voted

pattern is chosen as the final class. In our work, the main idea

of using bagging jointly with ADTrees is to make classifica-

tion results independently from the value of the poles. It is

a necessary step, because in each segment the optimal value

of the pole is selected via a stochastic search using the hy-

perbolic modification of the basic PSO algorithm [16]. This

procedure can affect the variance of the extracted coefficients

which can cause instability in the classification results.

6. RESULTS

In this section, we compare the performance of differ-

ent rational DSTFT systems with its competitive transform,

STFT, in terms of classification accuracy. For all the three

classification problems defined in Section 5, we consider 75%
of the data, chosen randomly, as the training set and rest of

the data as the test set. In addition, for STFT and all the ra-

tional DSTFTs, we extract a feature vector containing 21 ele-

ments (16 coefficients + 5 statistical values). Furthermore, the

bagged ADTree is fixed with k=20 iterations during the com-

parison. Tab. 1, shows the classification accuracy for three

classification problems. As it can be seen, the rational DSTFT

system using MT coefficients yields the highest classification

accuracy. For classification problem of sets E - A, both STFT

and MT rational DSTFT achieve the same results. However,

the MT coefficients outperform STFT coefficients in classi-

fication problems of E - A, C and E - A, B, C, D. In addi-

tion, the MRF representation results in better classification

accuracy than the classical STFT in problem of E - A, B, C,

D. For this classification problem the MT representation can

outperform the STFT coefficients. The lowest classification

accuracy in all the three classification problems is obtained

by the biorthogonal rational function system. Furthermore,

the inverse discrete (ID) STFT of the signal was computed

by using 16 coefficients for each segment. Then the average

mean square error was evaluated for all EEG records of the

Bonn dataset. As it can be seen in Fig. 3, the overall MSE’s

Table 1. Comparison of classification accuracies of different

rational DSTFT coefficients and STFT coefficients.

Rational coefficients
Classification Problem

E-A E-A, C E-A, B, C, D

STFT 0.997 0.982 0.956

Biorthogonal 0.976 0.948 0.931

MT 0.997 0.986 0.967

MRF 0.991 0.973 0.963
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Fig. 3. Mean Square Errors for Bonn Database.

of the ordinary and MT IDSTFT are 2.23 · 103 and 3.47 · 103,
so we achieved an improvement by 55% in this sense. As a

consequence, our representation is more robust than the clas-

sical STFT. In other words, the proposed method provides a

sparse representation of the signal while the components re-

main orthogonal (i.e., there is no redundancy).

7. CONCLUSION

In this paper, we propose the rational DSTFT and explore

the efficiency of rational functions by describing the epileptic

seizure patterns in time-frequency domain. The stochastic hy-

perbolic PSO search method is used to find the optimum value

of the pole for each segment of EEG signals. Our method can

provide an adaptive and scalable representation of the signal

which can be competitive to the classical STFT in terms of

feature extraction and MSE of the inverse transform.

In order to have a more scalable representation, we can

use multi-dimensional (MD) PSO [15, 17] to find the opti-

mum number of unique poles. MDPSO can search through

multi-dimensional problem spaces and converges to the poles

in the optimal dimension. Furthermore, by taking advantage

of the adaptive behavior of the rational representations, we

expect that our method can perform better on long-term EEG

recordings as well. Hence, we are planning to prove this as-

sumption in the future.
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