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ABSTRACT

Statistics of natural images has become an important sub-
ject of research in recent years. The highly kurtotic, non-
Gaussian, statistics known to be characteristic of many nat-
ural images are exploited in various image processing tasks.
In this paper, we focus on natural stochastic textures (NST)
and substantiate our finding that NST have Gaussian statis-
tics. Using the well-known statistical self-similarity property
of natural images, exhibited even more profoundly in NST,
we exploit a Gaussian self-similar process known as the frac-
tional Brownian motion, to derive a fBm-PDE-based single-
image superresolution scheme for textured images. Using the
same process as a prior, we also apply it in denoising of NST.

Index Terms— Image texture enhancement, superresolu-
tion, denoising, self-similarity, fractional Brownian motion,
natural image statistics.

1. INTRODUCTION

Statistics of natural images have been the subject of inten-
sive studies in recent years [1–3]. With the increased use of
statistical image enhancement algorithms, suitable priors play
a crucial role in the enhancement and restoration of images,
especially in ill-posed problems where severely degraded im-
ages are at hand.

Various studies have consistently shown that natural im-
ages exhibit non-Gaussian behaviour. This has been observed
by inspecting the 1D, 2D, or joint histogram of the wavelet
coefficients of an image [4, 5]. These histograms, evaluated
on numerous images, provide a good indication of the statis-
tical nature of the images. Rather than Gaussianity, natural
images exhibit highly kurtotic behaviour, indicated by heavy
tails in both 1D and joint distributions [6]. Many models cap-
ture this behaviour successfully, such as Gaussian scale mix-
tures (GSM) [4, 5] or generalized normal [7].
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While previous studies attempt to capture the entire range
of natural images, we consider natural stochastic textures
(NST), that are abundant in natural images [8]. Many natural
textures, such as sand, gravel, grass, grove and others exhibit
fine details that are severely degraded by cameras’ PSFs,
sampling and noise. Such textures are not well represented
by current models, and therefore enhancement algorithms,
such as superresolution or denoising, do not perform well
on NST. This problem is intensified when L2- or L1-based
methods are implemented, since these reward smooth or
piecewise-smooth images. This is addressed in recent stud-
ies attempting to figure out whether images are of bounded
variation space [9].

Contrary to recent findings indicating that natural images
are in general non-Gaussian, NST exhibit, in fact, Gaussian
statistics. Coupled with the self-similarity property, a model
can be proposed, based on the fractional Brownian motion
(fBm) process, which is the only Gaussian self-similar pro-
cess (in 1D). In this study we encorporate this model in a
PDE framework to obtain a novel single-image superresolu-
tion (SR) scheme, and use the fBm as a prior for a denoising
scheme.

2. STATISTICS OF
NATURAL STOCHASTIC TEXTURES

NST are an important part of a natural image. We briefly out-
line the methods of studying the statistics of natural images,
and provide results that substantiate our observation that NST
are Gaussian, in contrast with the known statistics of general
natural images [4, 6]. The test images were taken from the
VisTex texture database [10].

The images were analyzed in the wavelet domain, using
steerable pyramid wavelets, thus allowing for different orien-
tations as well as different scales (see [4]; other wavelets yield
similar results). Marginal histograms of wavelet coefficients
were extracted for different scales, as well as joint histograms
of pairs of pixels from adjacent scales or orientations.

In [6] and elsewhere, natural images were found to be
of highly distributed kurtotic values. A known distribution
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which fits 1D empirical distribution of images is the general-
ized normal distribution (or generalized Laplace distribution),
which has the following pdf:

p(x) = c(α, β) exp(−(|x− µ|/α)β), (1)

with the normalizing constant, c(α, β) = β
2αΓ(1/β) . The µ

and α parameters correspond to the mean and variance re-
spectively, where the variance is defined explicitly by α. The
β parameter determines the kurtosis of the distribution, whose
excess kurtosis is defined by:

K =
Γ(5/β)Γ(1/β)

Γ(3/β)2
− 3. (2)

β = 2 corresponds to the normal distribution with zero excess
kurtosis. The range 0 < β < 2 corresponds to distributions
with high kurtosis. Eq. (2) shows that the excess kurtosis is
defined nonlinearly with β; values of β > 1 correspond to
much smaller kurtosis relative to β < 1.

The generalized normal distribution has been success-
fully used as a distribution for wavelet coefficients of em-
pirical distributions of natural images for β ∈ [0.5, 1] [6, 7],
which correspond to leptokurtic behaviour. We propose
the normal distribution model for the class of stochas-
tic textures, obtained for β = 2 in Eq. (1). Out of the
numerous methods that determine the more suitable dis-
tribution, we use the Kullback-Leibler (KL) divergence,
DKL(f1‖f2) =

∫
R f1(x) log

(
f1(x)
f2(x)

)
dx, where f1(x) is

the empirical density and f2(x) is the density according to
the evaluated model [11].

We first assume the image dataset fits a leptokurtic dis-
tribution, the generalized normal, and estimate its β value
according to the mean of the sample kurtosis. The result is
β̂ = 0.711. We then propose two distributions: pn(x), a
normal distribution, and pg(x), a generalized normal, with
β = β̂. Equipped with the two distributions as possible mod-
els, the KL divergences for the empirical distribution and each
of the models were calculated. Out of 1914 test images, 620
(32%) had lower KL divergence for the normal distribution,
pn(x), indicating that the normal distribution better describes
the data. The test images were obtained by dividing all im-
ages (of size greater than 256 × 256) in the VisTex database
to 256× 256 sized images.

A second test was performed, with individual values of β,
each estimated from an individual image. Inspecting all val-
ues for this parameter, 19% were above a threshold kurtosis
value, which was chosen as the average between the Gaus-
sian distribution kurtosis and the Laplace distribution kurto-
sis. The latter has the lowest kurtosis for known image mod-
els, with β = 1 and excess kurtosis of 3. In this case as well,
we observe a significant number of images described better
by the Gaussian distribution. Three individual images, along
with their statistics, are displayed in Fig. 1, demonstrating
the different statistics of NST in contrast with the statistics of
general natural images.

2.1. Self similarity

The self-similarity property is an important property of nat-
ural images. For Gaussian processes, it can be evaluated by
performing log regression on the variance of the increments in
the image domain. This is due to the fact that the only Gaus-
sian process exhibiting self-similarity is the fractional Brow-
nian motion, whose covariance function is known [12]. The
log of the variance of the increments of order τ is given by:

yH(τ) = 2Hx(τ) + bH , (3)

where yH(τ) = log σ2(H, τ) is the measurement for each τ ,
x(τ) = log τ , and bH = log σ2

B(H) is a known parameter. H
is the Hurst parameter, controlling the self-similarity of the
process. Performing this regression on the images found to
be Gaussian in the above analysis yielded an R2 value with
median of 0.96, which indicates a realiable result and reas-
sures that NST are Gaussian and self-similar. The median
was chosen to minimize effects of outliers.

This result is important for image enhacement, as NST of-
ten exhibit fine details which are easily corrupted by blurring,
decimation and noise in practical image acquisition processes.
It is therefore imperative to have an accurate model, and treat
NST in a separate domain than other types of textures or car-
toon images.

3. SUPERRESOLUTION

Consider the following superresolution problem: A high-
resolution (HR) image is degraded by a blurring filter, and
it is subsequently subsampled to create the available low-
resolution (LR) image. The inverse process, of obtaining an
HR image is known as superresolution. Let X(η1, η2) and
Y (η1, η2) denote the original (HR) image and observed (LR)
image, respectively. The imaging model can be represented
as follows:

Y (η1, η2) = D ((Y ∗ b)(η1, η2)) , (4)

where D is the subsampling operator and b(η1, η2) is a non-
invertible blur kernel of limited spatial support. The decima-
tion operator introduces aliasing and renders the SR problem
to become severely ill-posed.

Unlike the classical multi-frame SR problem [13], in
single-image SR only a single measurement is available. It
can be formally stated as follows:

X̂(η1, η2) = arg min
X∈X

‖Y (η1, η2)−D ((X ∗ b)(η1, η2)) ‖p.
(5)

The SR image, X̂(η1, η2), thus obtained is the best one in
that it yields the smallest error relative to the original image
(ground truth) for a desired metric [14, 15].
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Fig. 1: Examples of general image and NST statistics: (a) A
natural image. (b) Its marginal wavelet coefficient distribu-
tion, with the Gaussian model (red-dashed) and the leptokur-
tic model (green-dotted). (c) Its joint (2D) distribution. The
KL divergences for the Gaussian and leptokurtic models were
0.58 and 0.08 respectively, indicating non-Gaussianity. (d)
NST: The KL divergences were 0.03 and 0.11 for the Gaus-
sian and the leptokurtic models respectively. (g) Another
NST: The KL divergences were 0.02 and 0.15 respectively.
For NST, the Gaussian model describes the images better. (e)
and (h) show the empirical, Gaussian and leptokurtic distribu-
tion fits (in blue, red-dashed and green-dotted respectively).
The Gaussianity of the NST is also apparent in the 2D his-
togram shapes in (f) and (i), compared with the non-Gaussian
one, (c).

3.1. A model for natural stochastic textures

Based on the Gaussianity and self-similarity of NST, we pro-
pose a texture model based on the fBm (the only process
which is both Gaussian and self-similar), and on the phase
of the degraded image:

X = X0 + V, (6)

where

X0 = α(Y ∗HLP ) + (1− α)(W ∗HHP ),

W = F−1{|F{U}| exp(j∠F{Y })}, (7)

U is a 2D fBm realization with a suitable parameter H , Y
is the degraded image, V is the model noise and α ∈ (0, 1).

HLP and HHP are lowpass and highpass filters respectively.
The parameter H ∈ (0, 1) controls the roughness of the fBm
image. The image X0 has three main properties: First, X0

and the degraded image, Y , have the same low frequencies.
Second, the high frequency part of X0 has the same phase as
the degraded image, derived from the well-established impor-
tance of phase in natural images [16,17]. The third property is
the magnitude of the high frequency part of X0, derived from
a realization of an fBm with H = Ĥ , where Ĥ is an estima-
tion of the original H (derived from the degraded image). Its
purpose is to exploit a realization with fBm high-frequency
details for reconstruction of missing frequency magnitudes in
the degraded image [14].

3.2. fBm-PDE-based superresolution scheme

A naive optimization scheme, based on the proposed model,
is as follows:

X̂ = arg min
X

α‖Y −DBX‖2 + β‖X0 −X‖2, (8)

indicating that the optimal solution yields the closest to the
proposed NST model and the image degradation model.
However, due to the fine details exhibited in NST, we use a
PDE-regularized scheme, adapted for texture enhancement as
well.

The anisotropic diffusion can be used as a regularizer for
image optimization problems, such as deblurring or superres-
olution. In this case, the cost function is:

L =

∫
Ω

α(Y−DBX)2+β(X0−X)2+γΨ(∇X+δ∇Yφ)dxdy,

(9)
where the first two terms are the reaction terms and the last
term is the diffusion regularization term. This is an exten-
sion of the diffusion-based deconvolution [18]. Applying gra-
dient descent on the Euler-Lagrange equation of this func-
tional yields the diffusion flow. The diffusion flow, along with
the modified reaction term, recovers degraded information, to
yield an SR scheme for NST. Yφ, or the empirical image, is
a novel term, derived from the statistical structure of the de-
graded image. The first and second order autocorrelation of
the increments of the degraded image increments are used to
yield a structure function [19], from which a random field
with stationary increments, suitable for the internal structure
of the image, is generated. Although the structure function
is built from the statistics of the degraded image, under the
scale invariance (self-similarity) assumption, these represent
the high-quality image as well.

As the diffusion flow preserves structure in the image, it
also inherently smoothes low gradients. Introducing the im-
age Yφ to the diffusion tensor assists in preserving the recov-
ered fine details and prevents their undesired smoothing. The
stopping condition for the diffusion is determined by the H
parameter; using the estimated original Ĥ , the final image is
obtained when H for the current iteration is the closest to Ĥ .
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Fig. 2: Two examples of SR. (a and e): LR image. (b and
f): Self-similarity-based SR, 15.14dB and 18.98dB PSNR re-
spectively. (c and g): fBm-PDE-based SR (proposed algo-
rithm), 19.49dB and 20.15dB PSNR respectively. (d and h)
the original image (ground truth).

3.3. Results

The proposed SR algorithm was evaluated on NST images
and compared with a state-of-the-art, self-similarity-based
single-image SR algorithm [20]. In all the test cases such
as the two shown Fig. 2, the textures were recovered by the
proposed algorithm. We noticed lack of improvement by
the application of existing methods. This is due to the low-
gradient structure of textures, where contour enhancement is
not sufficient for successful texture restoration. Furthermore,
contour emphasis is undesirable in such images, contrary to
the common demand in enhancement of general images, on
which the same algorithm yields much better results.

Each image was blurred by a Gaussian kernel with σ =
1.5 and decimated by a ratio of 2 in both axes. The PSNR
values are also provided for comparison (Fig. 2).

4. DENOISING

Denoising of NST is in particular challenging due to the fine
structure of the textures. The fBm prior can be encorporated
into any prior-based method. As a first attempt we chose to
use optimal MMSE estimation, which yields a convenient and
well-known linear estimator, due to the fact that both the im-
age and the noise are Gaussian.

Thirty images were chosen arbitrarily out of the set of im-
ages shown to be Gaussian and 64×64 patches were extracted
for the purpose of the test. Their H parameter was estimated
and the reference image was obtained.

Each image was blurred by a small Gaussian filter with a
σ = 0.5 and noise was added so that the blurred-PSNR varied
from 10dB to 20dB. The recovered PSNR was averaged for
all images. Despite using a naive scheme, we see that in terms

(a) (b) (c) (d)

Fig. 3: Example of denoising. (a): The original image. (b)
Noisy image, obtained from (a) by blurring with a Gaussian
blur with σ = 0.5 and contaminating with white Gaussian
noise so that the blurred PSNR is 11dB. (c): BM3D denoised
image, 14.73dB PSNR. (d): MMSE fBm-based denoised im-
age, 17.60dB PSNR.

Fig. 4: Denoising results. The MMSE estimate with fBm
prior (red-dashed) obtained similar results to the BM3D de-
noising algorithm (blue) in terms of PSNR, when performed
on NST. Each PSNR value is the mean for a test of 30 images
and the error bars indicate the standard deviation.

of both PSNR values and visual inspection (Fig. 3; for more
examples see http://tx.technion.ac.il/~ido), the fBm-based de-
noised images yielded similar results to those of BM3D, a
state-of-the-art denoising algorithm (Fig. 4) [21]. This is due
to the undelying model, which recovered fine details rather
than smoothing artifacts and preserving edges. It should be
noted that the fBm-based denoising is by far more computa-
tionally efficient, as it is a linear estimator.

5. CONCLUSIONS

NSTs, unlike natural images in general, exhibit Gaussian
statistics. Coupled with self-similarity, the fBm can be ex-
ploited as a prior model in various image processing prob-
lems. An fBm-based SR scheme shows satisfactory results,
and even a naive MMSE linear estimator-based denoising
already yields results similar to those obtained by means of
a recent and more complex denoising algorithm [21]. Other
fBm-based image processing schemes, as well as additional
applications such as image matching and tampering detection,
are currently under investigation.

5873



6. REFERENCES

[1] A. B. Lee, D. Mumford, and J. Huang, “Occlusion Mod-
els for Natural Images: A Statistical Study of a Scale-
Invariant Dead Leaves Model,” IJCV, vol. 41, pp. 35–
59, 2001.

[2] P. Moulin and J. Liu, “Analysis of Multiresolution
Image Denoising Schemes Using Generalized Gaus-
sian and Complexity Priors,” Inf. Theory, IEEE Trans.,
vol. 45, no. 3, pp. 909–919, 1999.

[3] D. Mumford and B. Gidas, “Stochastic models for
generic images,” Q. Appl. Math., vol. LIX, no. 1, pp.
85–111, 2001.

[4] M. J. Wainwright and E. P. Simoncelli, “Scale Mixtures
of Gaussians and the Statistics of Natural Images,” in
Adv. Neural Inf. Process. Syst., vol. 12. MIT Press,
May 1999, pp. 855–861.

[5] J. Portilla, V. Strela, M. J. Wainwright, and E. P.
Simoncelli, “Image denoising using scale mixtures of
Gaussians in the wavelet domain,” Image Process. IEEE
Trans., vol. 12, no. 11, pp. 1338–1351, Jan. 2003.

[6] A. Srivastava, A. B. Lee, and E. P. Simoncelli, “On Ad-
vances in Statistical Modeling of Natural Images,” J.
Math. Imaging Vis., vol. 18, pp. 17–33, 2003.

[7] E. P. Simoncelli and E. H. Adelson, “Noise removal via
Bayesian wavelet coring,” in Image Process. Int. Conf.,
1996, pp. 379–382.

[8] W.-C. Lin, J. Hays, C. Wu, V. Kwatra, and Y. Liu, “A
comparison study of four texture synthesis algorithms
on regular and near-regular textures,” Carnegie Mellon
University, Tech. Rep., 2004.

[9] Y. Gousseau and J.-M. Morel, “Are Natural Images of
Bounded Variation?” SIAM J. Math. Anal., vol. 33,
no. 3, pp. 634–648, Jan. 2001.

[10] R. Pickard, C. Graszyk, S. Mann, J. Wachman,
L. Pickard, and L. Campbell, “Vistex database,” Media
Lab., MIT, Cambridge, Massachusetts, 1995.

[11] S. Kullback, Information theory and statistics. Courier
Dover Publications, 1997.

[12] B. Mandelbrot and J. Van Ness, “Fractional brownian
motions, fractional noises and applications,” SIAM re-
view, vol. 10, no. 4, pp. 422–437, 1968.

[13] M. Elad and A. Feuer, “Restoration of a single
superresolution image from several blurred, noisy, and
undersampled measured images,” IEEE Trans. Image
Process., vol. 6, no. 12, pp. 1646–1658, Jan. 1997.

[14] I. Zachevsky and Y. Y. Zeevi, “Superresolution of self-
similar textures,” CCIT Rep. 838. EE Pub, Tech. Isr. Inst.
Technol., vol. 1795, 2013.

[15] ——, “Single-image superresolution of self-similar tex-
tures,” in IEEE Int. Conf. Image Process., Sep. 2013, pp.
952–956.

[16] A. V. Oppenheim and J. S. Lim, “Importance of Phase in
Signals,” Proc. IEEE, vol. 69, no. 5, pp. 529–541, 1981.

[17] J. Behar, M. Porat, and Y. Y. Zeevi, “Image Reconstruc-
tion from Localized Phase,” IEEE Trans. Signal Pro-
cess., vol. 40, no. 4, pp. 736–743, 1992.

[18] M. Welk, D. Theis, T. Brox, and J. Weickert,
“PDE-based deconvolution with forward-backward
diffusivities and diffusion tensors,” Scale Sp. PDE
Methods Comput. Vis., pp. 585–597, 2005.

[19] B. Pesquet-Popescu and P. Larzabal, “Synthesis of non-
stationary fields with stationary increments,” in Image
Process. Its Appl. Sixth Int. Conf., vol. 1, Jul. 1997, pp.
303–307.

[20] D. Glasner, S. Bagon, and M. Irani, “Super-resolution
from a single image,” in 2009 IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 349–356.

[21] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian,
“Image denoising with block-matching and 3D filter-
ing,” Proc. SPIE, vol. 6064, pp. 606 414–606 414–12,
Feb. 2006.

5874


