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ABSTRACT
We address the problem of parameter estimation of an el-
lipse from a limited number of samples. We develop a new
approach for solving the ellipse fitting problem by showing
that the x and y coordinate functions of an ellipse are finite-
rate-of-innovation (FRI) signals. Uniform samples of x and
y coordinate functions of the ellipse are modeled as a sum
of weighted complex exponentials, for which we propose an
efficient annihilating filter technique to estimate the ellipse
parameters from the samples. The FRI framework allows for
estimating the ellipse parameters reliably from partial or in-
complete measurements even in the presence of noise. The
efficiency and robustness of the proposed method is com-
pared with state-of-art direct method. The experimental re-
sults show that the estimated parameters have lesser bias com-
pared with the direct method and the estimation error is re-
duced by 5-10 dB relative to the direct method.

Index Terms— Ellipse, parametric curves, finite-rate-of
innovation, annihilating filter

1. INTRODUCTION
Data reduction and data classification are important tasks in
computer vision and pattern recognition [1]. One of the ways
to perform these operations is by curve fitting. For example,
given N two-dimensional data points, we can fit a circle to
the data points by minimizing a predefined objective func-
tion. Once the parameters of the circle are estimated, the N
data points can be represented by the coordinates of the cen-
ter of the circle and the radius of the circle. Ellipse fitting
problem is also extensively employed in image analysis, com-
puter vision, and pattern recognition problems. For example,
the boundaries of images of cells are well approximated by
ellipses [2]. Ellipse fitting problem is also encountered in as-
tronomy, where the path of the motion of the heavenly bodies
can be approximated by an ellipse.

1.1. Related work
Ellipse fitting or ellipse parameter estimation is a classical
but still actively researched area. Ellipse fitting methods
can be broadly classified into clustering-based methods or

distance-based least squares (LS) methods. Clustering based
methods include Hough transform [3], [4] and fuzzy cluster-
ing [5] based techniques. The advantages of these methods
are that they can fit multiple ellipses simultaneously and
they are robust against outliers. However, these methods
are slow and require large amount of storage and the com-
putational cost is too high. Zhang and Liu [6] proposed a
low complexity Hough transform-based ellipse fitting. In the
LS-based methods, the parameters of an ellipse are estimated
by minimizing either the algebraic distance or geometric dis-
tance between the data points and the ellipse. In algebraic
distance-based methods, the ellipse parameters from the im-
plicit second-order polynomial are estimated by minimizing
sum-of-squared algebraic distance over all the data points. To
avoid trivial solutions, certain constraints are imposed on the
parameters [7]- [15]. These methods may not always result in
an ellipse. Fitzgibbon et al. [10] proposed an ellipse specific
algebraic distance based method, which is solved using gen-
eralized eigenvalue-based approach. The algebraic distance
does not have any physical interpretation and these methods
produce highly biased ellipses in the presence of partial data.
To address some of these issues, different approaches have
been proposed in which geometric or statistical distances are
minimized. In geometrical distance measure [16], [17], [18],
the curve parameters are obtained by minimizing the Euclid-
ian distance between the data point and the ellipse. These
methods are iterative and require an initial estimate of the
ellipse parameters. Several modifications of algebraic and
geometrical distances have been proposed in [19–21]. Based
on the statistical analysis of data for ellipse fitting prob-
lem, different ellipse estimation methods have been proposed
in [22–24].

1.2. This paper
In this paper, we take a different viewpoint to the ellipse fit-
ting problem, by considering the parametric equations of an
ellipse:

x(t) = x0 + a cos(θ) cos(t)− b sin(θ) sin(t), (1)
y(t) = y0 + a sin(θ) cos(t) + b cos(θ) sin(t), (2)

where t ∈ [0, 2π), (x0, y0) are the coordinates of the center
of the ellipse, a and b are lengths of the major and minor axes,
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respectively, and θ represents the angle between major axis of
the ellipse and x-axis. The parametric equations of the ellipse
in (1) and (2) are defined by finite number of free parame-
ters {x0, y0, a, b, θ} for t ∈ [0, 2π], and hence they fall under
the class of finite-rate-of-innovation (FRI) signals. We pro-
pose to estimate the parameters of the ellipse using the FRI
signal sampling method first proposed by Vetterli et al. [25].
Subsequently, Dragotti et al. linked it with Strang-Fix condi-
tions of wavelet theory [26]. FRI signals have a finite number
of free parameters over the unit interval. The samples (with
suitable sampling kernel) of FRI signals, contains the param-
eter information of corresponding analog signals in the form
of frequencies and amplitudes of sum of weighted complex
exponentials (SWCE). Hence, the signal reconstruction prob-
lem reduces to one of parameter estimation of SWCE, which
is a classical problem in high-resolution spectral estimation
(HRSE) [27].

1.3. Problem formulation
Suppose we are given N uniform samples of x(t) and y(t)
with unknown sampling intervals Tx and Ty , respectively. We
assume that the samples are corrupted by independent and
identically distributed (i.i.d.) zero mean additive white Gaus-
sian noise (AWGN), that is,

x̃(n) = x(nTx) + wx(n), (3)
ỹ(n) = y(nTy) + wy(n), for n = 1, 2 · · ·N, (4)

where {wx(n)}Nn=1 and {wy(n)}Nn=1 are i.i.d Gaussian ran-
dom variables with zero mean and standard deviation σx and
σy , respectively. The goal is to estimate the five ellipse-
specifying parameters {x0, y0, a, b, θ} of the underlying el-
lipse as accurately as possible.

2. PROPOSED SOLUTION FOR ELLIPSE
PARAMETER ESTIMATION

The problem posed in the previous section is a non-linear
one, since the sampling intervals Tx and Ty are in general
unknown. The proposed parameter estimation method solves
the estimation problem in two stages. In the first stage, we
apply HRSE methods to estimate the sampling intervals. We
then use the estimated sampling intervals in the second stage,
to estimate ellipse specific parameters using LS mthod. As
the accuracy of estimating parameters depends on estimation
accuracy of Tx and Ty , we propose a lowpass filtering based
denoising approach to improve the accuracy of sampling in-
tervals and ellipse parameters.

2.1. Ellipse fitting using high-resolution methods

Using Euler’s identity ejφ = cosφ + j sinφ, (3) and (4) are
rewritten as

x̃(n) = x0 + α1e
jnTx − α2 e

−jnTx + wx(n), (5)
ỹ(n) = y0 + β1e

jnTy − β2 e−jnTy + wy(n), (6)

where the scalars α1, α2, β1 and β2 are related to ellipse pa-
rameters as

α1 = (a cos θ + jb sin θ)/2, α2 = (a cos θ − jb sin θ)/2,

β1 = (a sin θ − jb cos θ)/2, β2 = (a sin θ + jb cos θ)/2.

In (5) and (6), the uniform samples of parametric ellipse are
sequences of sum of three complex exponentials with fre-
quencies at [−Tx, 0, Tx] and [−Ty, 0, Ty], respectively, cor-
rupted with AWGN. Estimating Tx and Ty from (5) and (6)
is equivalent to the classical problem of estimating frequen-
cies of SWCE in the presence of AWGN [27]. There are
several methods proposed in the literature [27] to solve this
problem. However, in the ellipse fitting applications where
limited number of data points {x̃(n), ỹ(n)} are given, annihi-
lating filter method [25] is well suited.

One could apply a third-order annihilating filter separately
to x̃(n) and ỹ(n) to estimate Tx and Ty . In each of (5) and
(6), we have prior information that one of the frequency (ex-
ponents in (5) and (6)) is located at zero and other two have
same magnitude and opposite sign. Using this information we
propose a modified annihilating filter to suit the signal model.
We present the method for estimating Tx from x̃(n), and a
similar analysis applies for estimating Ty from ỹ(n).

2.2. Modified annihilating filter

In the absence of noise, the transfer function of causal annihi-
lating filter for the sequence x̃(n) is given as

H(z) = (1− e−jTxz−1)(1− z−1)(1− ejTxz−1), (7)

and the corresponding impulse response is given by h =
[1, − r, r, − 1], with r = 1 + 2 cosTx. The output of the
annihilating filter to the input x̃(n) is given by the sequence
cx̃(n) = x̃(n) ∗ h(n) = (x̃(n) − x̃(n − 3)) − r(x̃(n − 1) −
x̃(n − 2)) for n > 3. Ideally the sequence cx̃(n) should be
zero for n > 3, but in the presence of noise sequence cx̃(n)
can not be zero for any choice of real Tx. We estimate Tx
that minimizes the cost

∑N
n=4 |cx̃(n)|2. The closed-form ex-

pression for estimate of r in terms of noisy samples is given

as r̂x =
∑N−1

n=3 (x̃(n)−x̃(n−3))(x̃(n−1)−x̃(n−2))∑N−1
n=3 (x̃(n−1)−x̃(n−2))2 . The estimated

sampling interval is given as T̂x = cos−1( r̂x−12 ). The ad-
vantage of the modification in the annihilating filter is that it
does not require root-finding procedure, which is present in
conventional annihilating filter and a closed-form expression
for estimated Tx is derived, which reduces the computations
considerably.

2.3. Denoising using lowpass filtering (LPF)

We propose a lowpass-filtering-based denoising approach,
which precedes the annihilating filter. Since x̃(n) is com-
posed of a sum of complex exponentials with frequencies at
[−Tx, 0, Tx], and AWGN wx(n), in the frequency spectrum
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of x̃(n), the ellipse specific information is available in the
frequency band of [−Tx, Tx]. We can reduce the effect of the
noise outside the spectral band by applying a LPF operation
with a cutoff frequency chosen as Tx. In practice, we use
an approximation of Tx, given by physical constrain on the
sampling method. Since we need to estimate Tx from the
output sequence of the LPF operation, we need the filtered
output to be in sum-of-complex-exponentials form. This con-
dition restrict the filter to have finite impulse response (FIR)
and it imposes a restriction on the length of the filter for a
given cutoff frequency. We derive conditions on the filter
with the help of a simple example. Suppose we are given a
length-N complex exponential sequence x0(n) = ejω0n for
n = 0 : N − 1 and a FIR filter {h(n)}Mn=0 of length M + 1
with M < N . The convolution of the two sequences is given
as

(x0∗h)(n) =



0, for n < 0,
n∑

m=0

h(m)e−jω0(m−n), for 0 ≤ n ≤ M − 1,

H(ω0)ejω0n, for M ≤ n ≤ N − 1,
N−1∑

m=n−M

h(m)e−jω0(m−n), for N ≤ n < N +M,

0, for n ≥ N +M,

where H(·) is the frequency response of the filter h(n). This
example shows that the convolution output is a complex ex-
ponential with frequency ω0 for M ≤ n ≤ N − 1. Since
the filtering operation is linear, we can extend the analysis to
a sum-of-complex exponentials in x̃(n). Hence, by applying
M -length FIR filter for denoising, we have N − M output
samples in the form of SWCE form, which are subsequently
used in annihilating filter method to estimate the sampling
interval Tx. Given a fixed cutoff frequency, longer the fil-
ter impulse response M , better is the denoising performance.
However, this reduces the number of effective samples (which
have SWCE form) available for the annihilating filter. Hence,
the length of the denoising filter acts as a tradeoff parame-
ter. For the sequence x̃(n) (in absence of noise), the effective
filtered output is given by

x̃L(n) = x0HL(0)+α1HL(Tx)e
jnTx−α2HL(−Tx)e−jnTx ,

for n ∈ [M,N − 1] and HL(·) is frequency response of the
LPF. Once sampling interval is estimated, we can employ LS
methods to estimate the ellipse parameters. These parame-
ters should be scaled appropriately by HL(0), HL(Tx) and
HL(−Tx) (can be calculated using estimated Tx) to compen-
sate for the amplitude scaling due to filtering.

2.4. LS method to estimate the ellipse parameters

Once the sampling intervals Tx and Ty are estimated from
x̃(n) and ỹ(n) by proposed modified annihilating filter
method, parameters α1, α2, β1 and β2 in (5) and (6) are
linearly related to x̃(n) and ỹ(n). These four parameters
are estimated from {x̃(n), ỹ(n)}Nn=1 using the LS method.

Once α1, α2, β1 and β2 are estimated, the ellipse-specific
parameters {x0, y0, a, b, θ} are derived from them.

3. SIMULATION RESULTS

In this section we present simulation results in the presence of
noise and for partial ellipse data and compare them with the
Fitzgibbon’s direct method [10]. In all the experiments, we
set the ellipse parameters to be x0 = 3, y0 = 2, a = 8, b =
5, θ = 30o and Tx = Ty = 0.05 and the ellipse data points
are generated using these parameters. The first set of experi-
ments is designed to demonstrate the accuracy of the proposed
method in estimating the parameters from partial data. We run
the experiments for N = 40 and N = 60 data points, which
are taken from one-third and half of the arc of the ellipse. In
both the cases we applied the LPF for denoising. The LPF
has a cutoff frequency of 0.01π radians and was designed us-
ing Kaiser window approach with window parameter 4. The
order of the filter is M = 28 for N = 40, and M = 48 for
N = 60, respectively. In Fig. 1, we show 100 independent
realizations of estimated ellipses with noise standard devia-
tion σx = σy = 0.1. In these plots, the blue curve shows
the ground truth ellipse and the magenta colored ellipses are
the estimated ones. The green points are one realization of
noisy data samples used to estimate the ellipse parameters.
The magenta points in the center show the estimated center
of ellipses and the blue point actual center. We observe that,
for N = 40, the estimated ellipses using the direct method
are highly biased. However in the proposed method, with
N = 40, the estimated ellipses are less biased and the bias
depends on under- or over- estimation of the sampling inter-
vals Tx and Ty . With N = 60, both methods perform almost
similarly, but a small amount of bias is present in the direct
method [10].

The second experiment is performed to study the effect
of measurement noise on the performance of the proposed
method. In the experiment we vary σx = σy from 0.05 to 0.5
in steps of 0.05. In Fig. 2, we show the normalized mean-
square error (MSE) and bias of ellipse parameters for N =
60. We employed LPF of order M = 48 and cutoff frequency
of 0.01π radians. The LPF is truncated using a Kaiser window
with window parameter 6. Let θ and θ̂ denote the actual and
estimated parameters, respectively. The normalized MSE is
given by E(θ− θ̂)2/θ2 and normalized bias by (θ−E(θ̂))/θ,
respectively, where E(·) denotes the expectation operator. In
our simulations, we approximate it by sample mean over 1000
independent realizations for each σx. In Fig. 2, we show that
the proposed method has less bias relative to the direct method
for various ellipse parameters and the bias is close to zero for
different noise levels. The MSE in the proposed method is
lower than that of the direct method by 5 to 10 dB, for all
ellipse parameters except for the major axis.
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(a) Direct method, N = 40
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(b) Direct method, N = 60
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(c) Proposed method, N = 40
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(d) Proposed method, N = 60

Fig. 1. Ellipse fitting based on partial observations. The blue contour denotes the ground truth, whereas the magenta contours
show estimated ellipses. The estimated centers are also shown in magenta and ground truth centers in blue.
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Fig. 2. (a) Normalized MSE, and (b) normalized bias, versus noise standard deviation; uniform sampling; N = 60.

4. CONCLUSIONS

We presented a new approach for ellipse fitting by observing
that the parametric equations of an ellipse satisfy the FRI sig-
nal model. The uniformly sampled sequence of the x and
y coordinate functions of ellipse are modeled as a sum of
weighted complex exponentials and a modified annihilating
filtering approach is proposed to estimate the ellipse parame-

ters. The proposed technique is compared with Fitzgibbon’s
direct ellipse-fitting method. The FRI based method is unbi-
ased compared with Fitzgibbon’s method and the MSE in the
estimated parameters is less by about 5 to 10 dB in most of the
ellipse parameters over a wide range of noise levels. We are
currently carrying out validations on experimental data and
methods for ellipse fitting based on randomly sampled data.
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