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ABSTRACT 
 

DCT-Wiener image up-sampling scheme is highly desirable 

since it makes use of the advantages of the information in 

both spatial and DCT domains. The idea is to combine the 

observed low-frequency DCT coefficients with the estimated 

high-frequency DCT coefficients obtained by the Wiener 

filters in the spatial domain. However, the available 1-D and 

2-D Wiener filters that were proposed for high-frequency 

DCT coefficients estimation are block non-adaptive, mainly 

due to the limited information from the observed image. In 

this paper, we propose a block-adaptive Wiener filter by 

utilizing the information from external training data. During 

the online estimation, for each image block, the k-nearest 

relevant DCT LR-HR block pairs are searched from the 

training data, in order to estimate the coefficients of the 

Wiener filter. Experimental results show that the proposed 

block-adaptive Wiener filter improves the PSNR value of 

the DCT-Wiener scheme by 1.5 dB compared with that 

using non-adaptive 1-D Wiener filter. 

 

Index Terms— DCT, Wiener filter, up-sampling 

 

1. INTRODUCTION 
 

Since the launch of HDTV formats 720p and 1080p, the 

old video formats, such as VCD and DVD are required to be 

up-sampled for displaying on the HDTV and 4k TV. 

Fortunately, there are high correlations between the high-

resolution (HR) and low-resolution (LR) videos, such that 

many up-sampling algorithm were developed to up-sample 

the LR video by exploiting the correlations [1-4].  

Digital videos are mostly coded using the block-based 

Discrete Cosine Transform (DCT) for high compression 

efficiency [5-6]. Due to the convenience, some approaches 

have been proposed to develop re-sizing [7-20] (up-sample 

[7-11] and down-sample [12]) methods directly in the block 

DCT domain. Since the introduction of the DCT-Wiener 

schemes [9-10], the performance (in terms of PSNR) of the 

up-sample methods have been significantly improved. The 

idea is to preserve the observed low-frequency DCT 

coefficients in the down-sampled low-resolution image, 

while estimating the high-frequency DCT coefficients (that 

were truncated during the down-sampling process) by the 1-

D and 2-D non-adaptive Wiener filters [10, 21].  

Hung and Siu [10] discovered that the 1-D 6-tap Wiener 

filter for motion compensation is not appropriate for 

estimating the high-frequency DCT coefficients due to the 

phase-shift issue and non-optimized filter coefficients. 

Hence, they proposed to train a 2-D non-separable 6×6 

Wiener filter using the Lena image. This is to minimize the 

mean squares error of the Wiener filter that estimates the 

high-frequency DCT blocks from the low-frequency DCT 

blocks.  

In this paper, we address the major weakness of previous 

block non-adaptive Wiener filters [9-10] by proposing a 

block adaptive Wiener filter to estimate the high-frequency 

DCT coefficients. Different from adaptive Wiener filters 

used in the video coding applications [22-24] that requires 

the reference picture (original HR image) to estimate the 

block-adaptive filter coefficients, our approach makes use of 

the learning-based minimum mean squares error estimation 

[27] to search for the relevant information from training data 

to estimate the filter coefficients for each image block. As a 

result, the proposed block-adaptive Wiener filter does not 

require the original image and significantly improves the 

available block non-adaptive Wiener filters [10, 21]. 

     The rest of organization of this paper is as follows. 

Section 2 describes the basic structure of the proposed 

block-adaptive DCT-Wiener scheme. Section 3 explains the 

proposed block-adaptive Wiener filter. Experimental results 

are given in Section 4, and Section 5 concludes the paper.      

 

2. BLOCK-ADAPTIVE DCT-WIENER SCHEME 
 

2.1. Structure of the proposed scheme 
 

Figure 1 illustrates the basic structure of the proposed 

DCT-Wiener scheme, which is essentially the same as the 

hybrid schemes in the literature [9-10], except that we 

propose a block-adaptive Wiener filter for up-sampling a LR 

block in the spatial domain. The up-sampled HR block is 

then DCT transformed for retaining the high-frequency DCT 

coefficients, which is the most important information 

contributed to the sharpness and fidelity of the up-sampled 

image, as justified in the experimental Section. Finally, the 

LF and HF coefficients are combined to form the HR block. 
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Fig. 1   The basic structure of the proposed block-adaptive 

DCT-Wiener scheme. 
 

2.2. Why is block-adaptive Wiener filter? 
 

The major reason for developing a block-adaptive Wiener 

filter is to accommodate different DCT block characteristics 

by tuning the filter coefficients accordingly. The key to tune 

the filter coefficients is to carry out a searching process to 

identify the k-nearest neighboring DCT LR-HR block pairs 

from the external training data. The k-nearest block pairs are 

used as training samples of the Wiener filter for the linear 

weighted minimal mean squares error estimation. Given a 

sufficiently good searching criterion and a representative 

dictionary, the reconstruction error of the block-adaptive 

Wiener filter estimated from the training data is much lower 

than that of the fixed and non-adaptive Wiener filters.   

From the point of view in the classification theory [27], 

the non-adaptive Wiener filter assumes that there is only 1 

class of data, where the filter coefficients were optimized for 

this unique class. The block-adaptive Wiener filter 

suggested in this paper further interprets the data into an 

infinite number of classes by searching k-nearest block pairs 

which constitute and define a new class for the optimization 

in each image block. Specifically, the k-nearest block pairs 

that constitute the new class are used to optimize the filter 

coefficients. The closest approach [1] to our proposed work 

is to search for k-nearest block pairs for estimating the HR 

blocks in the spatial domain; however, this approach is non-

trivial and is not designed to estimate the high-frequency 

DCT coefficients.  

 

Fig. 2   Training blocks: HR block (blue), larger LR block 

(orange) and LR block (green). 

 

Fig. 3   The estimation process of one observed LR block 

using proposed learning-based Wiener filter 

 

3. PROPOSED BLOCK-ADAPTIVE WIENER FILTER 

 

3.1. Building the external training data 
 

Given a training HR image mn 22' ×ℜ∈Y , where 2n and 2m 

are dimensions of the HR image, we divide the HR image 

into Q non-overlapping blocks, represented by vectors, 
pp

i
⋅ℜ∈ 4}'{y , where 4p

2
 is the total number of pixels in 

each block, as illustrated in Figure 2. Moreover, we down-

sample the training HR image in the DCT domain by 

truncating the high-frequency DCT coefficients [11], and 

denote the training LR image as mn×ℜ∈'X . Similarly, we 

divide the LR image into non-overlapping blocks, 
pp

i
⋅ℜ∈}'{x , and overlapping blocks, )1()1(}'{ +⋅+ℜ∈ pp

iu . 

The overlapping blocks which have a slightly larger block 

size can accommodate the neighborhood area during the 

searching process, such that the searching accuracy can be 

improved [26]. Finally, we concatenate all vectors into 

matrices by grouping the vectors in an consecutive order. 

Note that the vectors with variances less than 48 are 

discarded. The formed the training data are as follows 

By' = [y'1  y'2 … y'Q]                                (1) 

Bu' = [u'1  u'2 … u'Q]                               (2) 

Bx' = [x'1  x'2 … x'Q]                                (3) 

where Q is the total number of vectors (blocks). In this paper, 

we use 24 training images as shown in Figure 4 to constitute 

around 220,000 blocks in matrices of training data Eq. (1)-

(3).  

 

3.2. Online estimation 
 

Given an observed LR image mn×ℜ∈X , we divide the 

image into non-overlapping blocks, represented by vectors,  
pp

i
⋅ℜ∈}{x , and overlapping blocks )1()1(}{ +⋅+ℜ∈ pp

iu , as 

illustrated in Figure 3. Let us illustrate the estimation 

process for this observed LR block xi as an example. As 

shown in Figure 3, we first compute the normalized 

correlation coefficients [25] between the observed block ui 

and all training blocks {u'i} from the training data Bu'. The k 
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nearest training blocks from the training data Bu', which 

have the highest correlations with the observed block ui, are 

selected by the following adaptive k-nearest neighbor (k-NN) 

criterion [1], 

kk
k

minargˆ =    subject to 1

],1[

)',( TCorr ji

kj

≥∑
=

uu         (4) 

where {u’j} represents the blocks sorted from the highest 

correlations to the lowest correlations, such that 

)',()',( 1+≥ jiji CorrCorr uuuu          for  ∀ j       (5) 

and T1 is a threshold to be determined by the cross-

validation [27]. Having obtained the index of the k-nearest 

training blocks using Eq. (4) and Eq. (5), we use the index to 

extract other k-nearest training blocks from the rest training 

data Bx' and By', and group them into matrices, as follows 

[ ]k'.....'' 11' xxxTx =                          (6) 

[ ]k'.....'' 11' yyyTy =                          (7) 

where {x’j} and {y’j} represent other k-nearest training 

blocks from the training data Bx' and By'. Let us model the 

weight of each pair of k-nearest LR-HR training data, i.e. x’j 

and y’j, using the exponential function to decay the weight of 

that pair by the computed correlation value, as follows 

 ))',(exp( fCorrW jij ⋅= uu                        (8) 

where Wj represents a diagonal element of the weighting 

matrix kk×ℜ∈W  , which concatenates the weights of all 

training pairs, {x'j} and {y'j}, and f is a parameter to be 

determined using cross-validation. Hence, the linear 

weighted MMSE estimation is performed as follows [1, 27] 

1
'''' )(ˆ −= TT

i xxxy WTTWTTH                         (9) 

where pppp
i

⋅×⋅ℜ∈ 4H  are filter coefficients of the Wiener 

filter, i.e., the linear MMSE estimator. Eventually, the 

observed vector xi is multiplied with the filter coefficients 

obtained from Eq. (9) to give the estimated HR block 

iii xHy ˆˆ =                                     (10) 

For reducing blocking artifacts, in our implementation, we 

artificially shift the observed LR image by [-1, 2] in both 

dimensions, i.e., shift for 16 times, in order to obtain 16 

different estimates of each high-resolution pixel. Then, we 

average the 16 estimates to give the final results.   

 

4. EXPERIMENTAL RESULTS 
 

The experimental works were done on an Intel i7 3GHz 

system. As we have explained, several parameters of our 

learning-based Wiener filter were optimized empirically 

through cross-validation, where the values are shown in 

Table 1. Eight CIF (352×288) and two 720p (1280×720) 

video sequences, as shown in Figure 5, were down-sampled 

by two times by truncating the high-frequency DCT 

coefficients in every image blocks of size 8×8 [11].  

Different state-of-the-art methods, including the bicubic 

interpolation, zero padding [14], overlapping zero padding 

[7], 1-D non-adaptive Wiener filter [21], hybrid DCT-

Wiener scheme [9], and the proposed block-adaptive DCT-

Wiener scheme, were applied to up-sample the Y-

components of all video frames. The UV components of 

video frames were up-sampled by the bicubic interpolation. 

PSNR-Y and SSIM-Y [28] values were measured, as shown 

in Table 2. 

The processing time for up-sampling a frame from QCIF 

(174×144) to CIF (352×288) is around 2 minutes using our 

non-optimized MATLAB codes. On the contrary, the 720p 

sequences require much longer processing time. The major 

computation comes from searching the k similar training 

pairs from the training data consisting of around 220,000 

training pairs. Subjective comparisons are shown in Figure 6. 

Sample locations to give notice are indicated by red arrows 

in this Figure. In general, the proposed up-sampling scheme 

produces pictures with the highest fidelity to the original 

high-resolution image, especially for the explicit object 

boundaries in the Foreman (Figure 6) sequences.   

The PSNR and SSIM measurements in Table 2 verify the 

subjective improvement observed in Figure 6. Specifically, 

the proposed scheme has the advantage of more than 1 dB in 

PSNR and around 0.03 in SSIM improvement comparing 

with the state-of-the-art methods in the literature. In other 

words, the proposed scheme significantly improves the 

available methods measured by subjective and objective 

evaluations. 

      

    

    

    

Fig. 4   The 24 training images (768×512) used in this paper. 
 

 

Fig. 5   Eight CIF (352×288) and two 720p (1280×720) 

video sequences used in our experiments. 
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Table   1   The parameter settings of the proposed learning-

based Wiener filter 

Parameters Explanation Values 

p Block size for down-sampling and up-sampling 4 

T1  Threshold for adaptive k-NN in Eq. (4) 350 

 Maximum value of k in Eq. (4) 600 

f Weighting function parameter in Eq. (8) 40 

Table   2   PSNR-Y (dB) and M-SSIM of (a) Zero padding 

[14], (b) overlapping zero padding [7], (c) bicubic 

interpolation, (d) 1-D non-adaptive Wiener filter [21], (e) 

DCT-Wiener scheme [9], and (f) proposed scheme 

PSNR-Y (dB) 
Videos 

(a) (b) (c) (d) (e) (f) 

Akiyo (CIF) 34.778 35.208 34.701 31.628 34.954 37.905 

Bus (CIF) 25.518 25.916 25.435 23.136 25.570 26.897 

Container (CIF) 27.331 27.635 27.110 24.983 27.276 29.004 

Football (CIF) 32.231 32.748 32.184 28.865 32.141 34.452 

Foreman (CIF) 31.588 31.478 31.135 29.394 31.938 32.738 

Mobile (CIF) 23.040 23.397 22.931 21.036 23.137 24.460 

News (CIF) 29.807 30.197 29.610 26.542 30.163 32.354 

Paris (CIF) 23.547 23.562 23.364 21.906 23.306 24.298 

Crew (720p) 38.588 39.037 38.461 35.107 38.757 40.120 

BigShips (720p) 33.391 33.572 33.206 30.882 33.481 34.727 

Average 29.982 30.275 29.814 27.348 30.072 31.695 
 

M-SSIM-Y 
Videos 

(a) (b) (c) (d) (e) (f) 

Akiyo (CIF) 0.9588 0.9640 0.9619 0.9396 0.9597 0.9768 

Bus (CIF) 0.8465 0.8581 0.8400 0.7762 0.8489 0.8847 

Container (CIF) 0.8738 0.8845 0.8731 0.8286 0.8743 0.9056 

Football (CIF) 0.9168 0.9262 0.9139 0.8690 0.9204 0.9381 

Foreman (CIF) 0.9148 0.9183 0.9123 0.8843 0.9167 0.9308 

Mobile (CIF) 0.7930 0.8072 0.7858 0.7181 0.7948 0.8534 

News (CIF) 0.9354 0.9440 0.9392 0.9016 0.9357 0.9653 

Paris (CIF) 0.8125 0.8160 0.8066 0.7524 0.8011 0.8521 

Crew (720p) 0.9592 0.9611 0.9571 0.9339 0.9585 0.9658 

BigShips (720p) 0.9151 0.9189 0.9121 0.8777 0.9152 0.9300 

Average 0.8926 0.8998 0.8902 0.8482 0.8925 0.9203 

 

Figure 6 shows that the proposed block-adaptive DCT-

Wiener up-sampling scheme preserves the sharpness across 

edge orientation and the smoothness along edge orientation, 

which are the fundamental characteristics of sharp edges 

without artifacts. It further justified the reconstruction ability 

of high-frequency DCT coefficients of the proposed scheme, 

owning to the results that small details (such as teeth, eye, 

nose) are well reconstructed. Note that these tiny details may 

not have similar counterparts in our training images (Figure 

4); however, the proposed scheme are very strong in de-

ringing and avoiding artifacts by adaptively tuning the filter 

coefficients and averaging 16 estimates. 

 

5. CONCLUSION 

 

In this paper, we propose a learning-based Wiener filter 

which is block-adaptive according to the input LR image 

block, to estimate the HR block, in order to extract the high-

frequency DCT coefficients. The proposed block-adaptive 

Wiener filter is incorporated into the DCT-Wiener scheme 

that combines the information from both spatial and DCT 

domain to up-sample an image which is assumed to be 

down-sampled in the DCT domain in various applications. 

Subjective and objective evaluations verify the highly 

competitive performance of the proposed Wiener filter for 

the DCT-Wiener scheme. 

One of the future directions is to decrease the complexity 

of the proposed Wiener filter by pre-computing a fixed 

number of sets of filter coefficients for various image 

contents. During the online estimation, the search for k-

nearest training pairs is avoided, in order to dramatically 

decrease the overall computation. It is anticipated that there 

will be a substantial performance drop by using fixed sets of 

filter coefficients; however, depending on the number of pre-

computed filters, the overall performance should still be 

higher than the non-adaptive Wiener filter using one set of 

filter coefficients in previous approaches. 
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(a) Zero padding [14] (b) Overlapping zero padding [7] 

 
(c) 1-D 6-tap Wiener filter [21] (d) DCT-Wiener scheme [9] 

 
(e) Proposed up-sampling scheme (f) Original high-resolution image 

Fig. 6   First frame of the reconstructed Foreman sequence 

for two times up-sampling. (Please look for the electronic 

version for a better perception.) 
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