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ABSTRACT

In current color image super-resolution methods, super-
resolution based on sparse representation achieves state-
of-the-art performance. However, the exploited sparse repre-
sentation models deal with the color images as independent
channel planes. Consequently, these approaches process the
color pixels as scalar quantity, lacking of accuracy in describ-
ing inter-relationship among color channels. In this paper,
we propose a quaternion-based online dictionary learning
method and solve color image super-resolution by employ-
ing a quaternion-based sparse representation model. This
sparse representation model implements color image super-
resolution in a kind of vectorial reconstruction, effectively
accounting for both luminance and chrominance geometry in
images. The proposed color image super-resolution method
can better describe the inter-channel changes. In the case
that changing lighting conditions affect color more than the
luminance perception, it can obtain superior performance
comparing to the methods based on monochromatic sparse
models with 1dB improvement.

Index Terms— Quaternion, super-resolution, sparse rep-
resentation, dictionary learning, PCA, OMP

1. INTRODUCTION

Image SR problem is a highly ill-posed inverse problem since many
HR images may produce the same LR image when blurred and
down-sampled. Therefore, some prior knowledge about the decima-
tion model is necessary for the solution of the image SR problem.
Typically, there are three kinds of SR approaches, i.e. interpolation-
based methods, reconstruction-based methods and learning-based
methods. Learning-based methods usually achieve better visual
quality than the other two categories of approaches, since learning-
based methods have more redundant information available with the
help of sample dataset.

Recently, a sparse prior has been employed in the learning-based
SR methods[1, 2], which achieves state-of-the-art performance.
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There are two kinds of color image sparse models used in SR tasks:
(1) The color image is separated into three channel images and then
the sparse representation is enforced on each image independently.
(2) The three channels of the color image are concatenated and then
the sparse representation is processed for this generated monochro-
matic image. Both approaches consider no constraints among the
color channels. Therefore, color bias would be introduced[3].

In this paper, we propose a quaternion-based sparse prior model
for single color image SR, which formulates a color pixel as a quater-
nion unit and thus processes multichannel information in a parallel
way. In essence, SR image is reconstructed as a vectorial operation
between the color atoms in the learned quaternion dictionary and s-
parse quaternion coefficients. The experimental results demonstrate
that this sparse representation model can better describe the inter-
channel changes, especially under the cases that changing lighting
conditions affects color more than the luminance perception. In such
cases, the reconstructed SR image from the quaternion-based sparse
model can achieve image quality improvement of 1dB as compared
with the images from the monochromatic sparse models.

2. QUATERNION-BASED SPARSE
REPRESENTATION MODEL

We employ quaternion to represent color pixels and process three
channels in a parallel way. The proposed sparse representation mod-
el is,

ṗ = Ḋα̇ (1)

where ṗ = pr · i+pg · j +pb · k denotes a quaternion represented
color image patch, Ḋ = Dr · i + Dg · j + Db · k is the learned
quaternion dictionary and α̇ = α0 + α1 · i + α2 · j + α3 · k is
the corresponding sparse coefficient vector. We expand (1) using
quaternion algebra operation and get,

0 = Dr · α1 +Dg · α2 +Db · α3

pr = Dr · α0 +Dg · α3 −Db · α2

pg = −Dr · α3 +Dg · α0 +Db · α1

pb = Dr · α2 −Dg · α1 +Db · α0

(2)

From (2), we observe that the three channel images are uniformly
represented using three channel dictionaries Dr, Dg and Db, which
are linearly related with each other. By training the quaternion dic-
tionary Ḋ in a proper way, the interrelationship of the three channels
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Fig. 1. Flow chart of proposed method

for color patches can be well preserved. In contrast, current color
image sparse models represented each channel image using inde-
pendent dictionaries, providing no assurance of channel correlation
in the reconstruction.

The quaternion dictionary Ḋ contains a certain amount of pro-
totype atoms as its columns, which is denoted as ḋj . Then a color
image patch ṗ can be represented as a sparse linear combination of
these atoms,

ṗ =
∑
j

ḋjα̇j j = 1, 2, . . . ,K (3)

where K is the size of Ḋ, and α̇j is the jth element of vector α̇. We
formulate α̇j as the composite of a scalar part and a vector part by
writing α̇j = (a0, a1, a2, a3) = [S(ȧj), V (ȧj)], where S(ȧ) = a0

and V (ȧ) = {a1, a2, a3}. Similarly, we formulate element i of

color atom ḋj as ḋ(i)j = (0, dr, dg, db) =
[
0, V

(
ḋ
(i)
j

)]
, then get

S
(
ḋ
(i)
j × α̇j

)
= −V

(
ḋ
(i)
j

)
◦ V (ȧj)

V
(
ḋ
(i)
j × α̇j

)
= S (α̇j)V

(
ḋ
(i)
j

)
+ V

(
ḋ
(i)
j

)
⊗ V (α̇j)

(4)

In (4), S(·) and V (·) extract the scalar part and the vector part of
a quaternion, respectively. Symbol ‘◦‘ denotes dot product operator
and ‘⊗‘ denotes cross product operator of two vectors. It should
be noted that color image patch is sparsely represented as a kind of
vectorial operations in a non-commutative way.

3. SUPER-RESOLUTION USING
QUATERNION-BASED SPARSE MODEL

3.1. Formation of training data set

Many previous works[4, 5, 6] suggest that distinct features from the
LR image are very important to accurately predict the HR image.
Similar to the works in [1, 2], we choose the first order and the sec-
ond order gradient operators to obtain distinct features because of
their simplicity and effectiveness. Four gradient operators are in-
volved in the feature extraction,

f1 = [−1, 0, 1] f2 = fT
1

f3 = [1, 0,−2, 0, 1] f4 = fT
3

(5)

where subscript ‘T ‘ denotes the transpose operator of a matrix. As
shown in Fig. 1, the implementation details of color image superres-
olution can be summarized as follows,

1) We convolve these four filters with the three color channels sepa-
rately and then formulate the extracted gradient maps as quaternion
matrices. These four gradient maps are concatenated as one gradient
map.
2) We extract image patch pairs from the HR-LR gradient image pair
and denote them as ṗl ∈ Qn and ṗh ∈ Qm, m > n. After extract-
ing enough training image patches, we obtain a training set pair of
Ω̇l0 ∈ Qn×L and Ω̇h0 ∈ Qm×L

3) We apply Quaternion Principal Component Analysis (QPCA)[7]
to the LR data set Ω̇l0 to obtain a subspace Ω̇l which can preserve
more than 99.9% of the total variance. First, we multiply Ω̇l0 with
Ω̇H

l0 , noting that superscript ‘H‘ means conjugate transpose opera-
tion. Then a Hermitian matrix Ṡ = Ω̇l0Ω̇

H
l0 is obtained, Ṡ ∈ Qn×n.

Therefore, we can find the eigenvalue matrix E ∈ Rn×n with the
corresponding eigenvectors V̇ ∈ Qn×n which satisfy Ṡ = V̇ EV̇ H .
Next, we preserve the top q largest eigenvalues and their correspond-
ing eigenvectors V̇ QPCA ∈ Qn×q . We then obtain Ω̇l ∈ Qq×L by

Ω̇l =
(
V̇ QPCA

)H

Ω̇l0 (6)

3.2. Quaternion orthogonal matching pursuit

The QOMP algorithm solves the problem of decomposing signal
ṗ ∈ Qq on a quaternion dictionary Ḋ ∈ Qq×N satisfying either
of the equation (7) or (8)

α̇ = argmin
α̇∈Q
∥ṗ− Ḋα̇∥22 s.t. ∥α̇∥0 ≤ K (7)

α̇ = argmin
α̇∈Q
∥α̇∥0 s.t. ∥ṗ− Ḋα̇∥22 ≤ ϵ (8)

where α̇ ∈ QN are the sparse coefficient vector. ε and K are two
types of stopping criteria. The implementation details of QOMP can
be summarized as,
1) We initialize the residual ε̇ as the signal ṗ itself, quaternion dic-
tionary as an empty set.
2) At the kth iteration, QOMP selects the atom that produces the

absolute largest decrease in the mean square error
∥∥∥ε̇(k−1)

∥∥∥2

2
. In

implementation, we compute the correlation between the residual
signal ε̇ and each atom ḋm in dictionary, i.e. C

(k)
m = ε̇(k−1)ḋH

m.
Then select the atom which achieves the highest correlation value
and record its index as m(k). We add the index m(k) to an index
array M and label Ḋ(k) as the active atoms.
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Algorithm 1 Quaternion Online Dictionary Learning
Require:

Training set Ω̇l ∈ Qq×K , error tolerance ε, iteration times
T , mini-batch size η, data reduction parameter ρ;

1: Ȧ0 ← 0,Ḃ0 ← 0
2: Initialize the dictionary Ḋl with patched in Ω̇
3: for t = 1 to T do
4: Randomly select a mini-batch ψ̇ with η patches from

Ω̇ and ṗl ∈ ψ̇
5: Sparse coding: use QOMP to solve

α̇t = argmin
α̇∈Q
∥α̇∥0 s.t. ∥ṗ(t)

l − Ḋ
(t−1)
l α̇(t)∥22 ≤ ε (9)

6: βt =
(
1− 1

t

)ρ
7: Ȧ(t) ← β(t)Ȧ(t−1) + 1

η

η∑
i=1

α̇(t)
(
α̇(t)

)H

8: Ḃ(t) ← β(t)Ḃ(t−1) + 1
η

η∑
i=1

ṗ
(t)
l

(
α̇(t)

)H

9: repeat
10: for each column dj in Ḋ

(t)
l do

11:

u̇j ←
1

Ȧjj

(
ḃj − Ḋ

(t)
l ȧj

)
+ ḋj

ḋj ←
1

max(∥u̇j∥22, 1)
u̇j

(10)

12: end for
13: until convergence
14: end for
15: return ˜̇Dl;

3) Compute Coefficients: α̇(k) =
(
Ḋ(k)

)+

Ṗ, where superscript
‘+‘ denotes quaternionic pseudo-inverse operation. Then update the
residual signal ε̇(k) = ṗ− Ḋ(k)α̇(k).
Iterate step 2)-3) until the residual signal is no greater than a tol-

erance error bound, i.e.
∥∥∥ṗ− Ḋα̇

∥∥∥2

2
≤ ε or the number of active

atoms is no less than K, i.e. ∥α̇∥0 ≥ K. Output α̇(k) as the solution
of QOMP algorithm.

3.3. Quaternion online dictionary learning

The sparse coding problem in online dictionary learning (ODL) is l1
norm convex optimization when fixing the dictionary and is solved
by LARS[8]. The dictionary updating problem is also a convex
optimization when fixing the coefficients and is solved by using a
method based on block-coordinate descent. ODL has an advantage
on memory usage and computation over ordinary batch method-
s such as K-SVD[9]. This online method is more suitable to deal
with a large number of training samples. Therefore, we employ this
method and develop a quaternion version of ODL with a modifica-
tion of the sparse coding phase, but not relaxing l0 pseudo-norm to
l1 norm as ODL does. We apply QOMP described in section 3.2 to
the following non-convex optimization problems because of its effi-
ciency. Subsequently, dictionary is updated using a similar approach

Algorithm 2 Quaternion-based Super-resolution
Require:

Dictionary pair Ḋh and Ḋl, a LR image yl, high-pass
filters G, non-zero coefficients number K

1: Interpolate the LR image yl and obtain yhl
2: Extract the feature from LR image channels respectively

by f cl = ycl ∗G, where c = y, cb, cr and then forming fl
by setting the three imaginary parts as f cl respective and
the real part zeros.

3: Select patches Ṗl from fl
4: for each patch ṗk

l in Ṗl do
5: Sparse coding: use QOMP to solve

α̇k = arg min
α̇k∈Q

∥ṗk
l − Ḋlα̇

k∥22 s.t. ∥α̇∥0 ≤ K (11)

6: Synthesize the high frequency component in each
patch via

ėh = Ḋhα̇
k (12)

7: end for
8: Average the overlapping area and obtain ˜̇eh.
9: Add the interpolated image with ˜̇eh to obtain HR image
ẏh0 = ẏhl + ˜̇eh.

10: Find the image ẏh close to ẏh0 using back-projection

˜̇yh = argmin
ẏh
∥ẏh − ẏh0∥ s.t. ẏl = SHẏh (13)

where S is a down-sampling operator andH is a blurring
filter.

11: return ˜̇yh;

described in [10]. The sparse coding and the dictionary updating
step are implemented alternatively. The scheme is formulated in Al-
gorithm 1. Note that β(t) is used in iterations to reduce the weight of
previous data. Ȧ(t) and Ḃ(t) are used to carry the information about
coefficients in iteration t. ȧj and ḃj denote the jth column in Ȧ(t)

and Ḃ(t) respectively. Ȧjj is the jth element in the leading diagonal
of Ȧ(t).

After finding an over-complete dictionary Ḋl for LR training
set Ω̇l, we apply QOMP to find the final sparse coefficients α̇ of Ω̇l

with respect to Ḋl. The corresponding objective function is the same
as (7). The HR dictionary should have the ability to sparse recover
the HR training set as accurately as possible. Thus, the objective
function can be formulated as

Ḋh = arg min
Ḋh∈Q

∑
k

∥ṗk
h − Ḋhα̇

k∥22

= arg min
Ḋh∈Q

∥Ṗh − ḊhȦ∥2F
(14)

where superscript ‘k‘ locates the position of patch ṗk
h, Ṗh is the

patch array of patch ṗk
h and Ȧ is the coefficients array of α̇. Similar

to the approach in [11], Ḋh can be solved by

Ḋh = ṖhȦ
+ (15)

where Ȧ+ means the quaternion pseudo-inverse matrix of Ȧ.
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(a)

(f)

(b)36.75dB

(g)32.00dB

(c)36.02dB

(h)31.97dB

(d)36.91dB

(i)31.97dB

(e)38.83dB

(j)32.99dB

Fig. 2. Columns from left to right:gound truth,bicubic interpolation, Yang et al.[1, 2], Zeyde et al.[11], proposed method

Quaternion pseudo-inverse can be implemented using Quaternion
Singular Value Decomposition depicted in [12].

3.4. Color image super-resolution

With an assumption that the sparse coefficient α̇ is shared for HR-
LR image patch pair, i.e. ṗk

l = Ḋlα̇
k and ṗk

h = Ḋhα̇
k, we first

compute the sparse coefficients of LR image and then synthesize
the high-frequency bands of the HR image. The weighted-averaging
is conducted in the overlapping areas to enforce local smoothness
on high-frequency bands, which is added with the interpolated LR
image to generate an initial estimation of HR image. Finally, we
use back-projection to remove the artifacts and further refine the SR
results. We summarize our method in Algorithm 2.

4. EXPERIMENTAL RESULTS

The test images cover both generic images whose high-frequency
bands are concentrated in luminance channel and full-color images
which present significant edges in all color channels.

In all the experiments, the magnification factor is set as 3 and
the size of the quaternion dictionary of size 256 is used. We use
the training image set in the Yang’s package which is available
at http://www.ifp.illinois.edu/˜jyang29/. Some
commonly-used parameters of our method in the experiments are
listed as follows. We choose patch size as 5 × 5 considering the ef-
fectiveness and the computation efficiency. Empirically, we choose
the error tolerance ε of QOMP in the training phase as 0.05. We
prune the training samples from 150,000 to about 100,000 by re-
moving those samples with relatively small variance. The iteration
number T in Algorithm 1 is set as 100. The sparsity parameter K is
set as 15 in algorithm 2 for QOMP during the SR phase.

We compare our results with the typical interpolation method
of bicubic and two typical SR methods using image sparse model,

images bicubic Yang Zeyde ours
baboon 21.01 21.36 21.38 21.41
barbara 24.67 24.86 25.17 25.19
lenna 28.27 29.02 29.02 29.13

monarch 28.18 29.40 29.47 29.52

Table 1. PSNR values of different methods.

including the work of Yang et al.[1, 2], and the work of Zeyde et
al.[11]. The parameters set in the works of Yang et al. can be referred
to [1, 2]. The parameters set in the work of Zeyde et al. is suggested
in [11]. We evaluate our experiment using both subjective visual
perception and objective quality measurement.

Fig. 2 shows the results of abovementioned 4 methods. The
works of Yang et al.[1, 2] and Zeyde et al.[11] cannot synthesize the
desired sharp color edges, while the latter achieves a greater PSNR
value than the former. The proposed SR method using quaternion-
based sparse model synthesizes sharper edges and yields fewer ar-
tifacts. It outperforms the state-of-the-art methods [1, 2, 11] in ef-
fectively preserving both luminance and chrominance geometry in
images. Some generic images which presents less color structures
are also chosen in the test images. We observe from Table 1 that our
method remains a competitive performance to Yang el al.[1, 2] and
Zeyde et al.[11].

5. CONCLUSION

We propose a new color image super-resolution approach based on
quaternion sparse representation. It implements SR task as a kind
of vectorial signal reconstruction and thus avoid color bias prob-
lem. More specifically, the proposed method can obtain superior
performance in full color images comparing to the methods based
on monochromatic sparse models with 1dB improvement.
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