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ABSTRACT

In this paper, we present an effective hierarchical depth processing
and fusion for large stereo images. We propose the adaptive dis-
parity search range based on the combined local structure from im-
age and initial disparity. The adaptive search range can propagate
the smoothness property at the coarse level to the fine level while
preserving details and suppressing undesirable errors. The spatial-
multiscale total variation method is investigated to enforce the spatial
and scaling consistency of multi-scale depth estimates. The exper-
imental results demonstrate that the proposed hierarchical scheme
produces high quality and high resolution depth maps by fusing in-
dividual multi-scale depth maps, while reducing complexity.

Index Terms— Depth, Hierarchical, Stereo, Fusion

1. INTRODUCTION

Large stereo images are more favorable to customers since they can
show realistic, high resolution imagery with a wide field of view.
However, high resolution images pose a challenging problem for
many computer vision tasks.

Hierarchical (multi-resolution) depth schemes are efficient in
dealing with large stereo images by reducing matching ambiguity
and computational complexity. However, it is difficult to achieve
high accuracy and reduce complexity at the same time. In stereo
matching area, local methods [1, 2] based on window matching, and
global methods [3, 4, 5, 6] based on belief propagation, have used
the hierarchical scheme. In fact, the hierarchical scheme is useful
for avoiding local minima in correspondence matching, but it has a
limitation such as error propagation from coarse to fine levels. The
limitation cannot guarantee that final matching accuracy will be im-
proved. Therefore, most hierarchical methods focus on reducing
computational complexity at the expense of accuracy. Two hierar-
chical algorithms [7] and [8] have reduced disparity search range to
speed up. However, the reduced search value set as constant at each
pixel may propagate error. The hierarchical stereo method with thin
structure [9] emphasizes the importance of search range shifted by
the disparity of the corresponding coarse point. However, there is no
discussion on how to find the optimal disparity search range. All of
these hierarchical methods process small images such as the Middle-
bury datasets [10]. We are dealing with stereo images about twenty
times larger than that of the Middlebury datasets. As image scale
increases, so does the importance of mitigating the limitation of hi-

This work is supported in part by NSF grant CCF-1065305, by In-
tel/CISCO under the VAWN program and by the Technology Development
Program for Commercializing System Semiconductor funded by the Ministry
of Knowledge Economy (MKE, Korea). (No. 10041126, Title: International
Collaborative R&BD Project for System Semiconductor).

erarchical disparity methods. Another challenging factor arising in
the high resolution image will be discussed in Section 2.

Generally, real images and video frames are susceptible to vari-
ous noise factors such as camera and illumination distortion. There-
fore, a consistency function is required in the disparity estimation
process. For example, temporal consistency should be considered
in video frame disparity estimation. Similarly, scaling consistency
needs to be taken into account in multi-scale disparity processing
of large stereo images. To the best of our knowledge, the disparity
scaling consistency issue has not been studied.

The contribution of this paper is the adaptive pixel-wise disparity
search range, which is based on the local structure of image and ini-
tial disparity map. The optimal adaptive search range can propagate
smoothness in the homogeneous areas and help to recover the initial
disparity error. We investigate the spatial-multiscale total variation
(TV) to enforce both spatial and multi-scaling consistency. Finally,
the adaptive search range and spatial-multiscale TV play a role in
fusing multi-scale disparity maps by guiding estimation and combin-
ing the complementary information, respectively. We quantitatively
evaluate the effectiveness and advantage of the proposed method and
then demonstrate that it achieves high-quality depth map on large
real-world panoramic views.

The rest of the paper is organized as follows. The problem that
we are solving is described in Section 2. The details of the proposed
method are presented in Section 3. Section 4 shows experimental
results and discusses their significance. We conclude with some re-
marks in Section 5.

2. PROBLEM

It is challenging to obtain a high quality and high resolution depth
map on large stereo panoramas (8, 192 × 4, 096). For large im-
age processing, we take into account a hierarchical framework and a
partitioning-stitching approach.

Fig. 1 illustrates the problem addressed in this paper. At the
coarsest level in Fig. 1(b), the prominent features and overall infor-
mation appear in the smooth form, but sharp edges and details are
lost as shown in the red boxes. In contrast, most details and edges
are preserved at the finest level in Fig. 1(c), but a lot of errors are
present in the low and high-textured areas as shown in the green
boxes. It can be observed that fine details are too small to detect at
the coarse level. As the resolution level increases, size of ambiguous
areas tends to increase. For example, the structure information in
the low-textured area becomes more ambiguous and the structure in
the high-textured area tends to look like a repetitive pattern as image
resolution increases. The difficult problem is how to fuse only the
beneficial characteristics at the coarse and finer level while suppress-
ing undesirable errors.
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Fig. 1. Depth maps in hierarchical framework. (a) Left panorama.
(b) Coarsest depth map. (c) Finest depth map.

Fig. 2. System diagram.

3. PROPOSED METHOD

3.1. Proposed system framework

Fig. 2 illustrates the proposed multi-stage framework, which consists
of three main blocks: adaptive search offset map, guided disparity
estimation, and spatial-multiscale TV. First, we build a stereo pair of
Gaussian pyramids with k levels, and then estimate an initial dispar-
ity, using the local method with 3-moded census (LM3C) [11]. The
adaptive search offset map is constructed by using image intensity
and the initial depth. The shaded blue box in Fig. 2 indicates the it-
erative portion of the algorithm. The final disparity map is obtained
by applying the spatial-multiscale TV to multi-resolution disparity
maps (d0, d1, .., dk−1).

3.2. Structure tensor-based Adaptive search range

For the next level estimation, we can utilize given initial priors to
adaptively minimize the disparity search range without loss of accu-
racy. The reduced disparity search range (Rk) for the next level k
can be expressed as

2dk−1 −∆d ≤ Rk < 2dk−1 + ∆d (1)

where dk−1 is the disparity estimate at level k − 1, and ∆d is the
adaptive disparity search offset.

Fig. 3 illustrates the disparity search offset (∆d) in the full
search range (L). It is crucial for hierarchical scheme to properly
choose ∆d since a small ∆d at a certain point can increase speed and
matching disambiguation, while a larger ∆d at a different point can
better resolve complicated object edges [9]. Hence, the estimation
quality and speed directly depend on d0 and ∆d.

Structure tensor is known as the second-moment matrix, which
is calculated by the summation of the outer product components of
the local gradient from a neighborhood [12]. We consider the 2D
structure tensor for detecting two-dimensional features of an image:

S =
∑
∇I∇IT =

( ∑
I2x

∑
IxIy∑

IxIy
∑

I2y

)
. (2)

Fig. 3. Illustration of disparity search range.

S is a symmetric positive semi-definite matrix, which possesses two
non-negative eigenvalues λmax, λmin. Ix is the image gradient
along x direction. There are three distinct cases for the relative val-
ues of these two eigenvalues [13]:

• λmax ≈ λmin ≈ 0: low-textured area with almost no struc-
ture

• λmax � 0, λmin � 0: high-textured area with ambiguous
orientation

• λmax � 0, λmin ≈ 0: one dominant orientation.

For the local structure acquisition, both image intensity and the ini-
tial disparity map are exploited as a prior since they may reveal dif-
ferent but complementary structure information. The following ob-
servations are made:

• Matching ambiguities occur in both low and high-textured ar-
eas

• Disparity jumps occur at real disparity edges, which generally
match the corresponding image edges

The first observation indicates that ∆d should be small enough to
reduce the ambiguity at the next high level. Small ∆d in turn propa-
gates the desirable smoothness property of the coarse disparity esti-
mates. The second one represents that ∆d should be large enough to
detect the big disparity changes and in turn recovers the initial dis-
parity errors. We can define a function of eigenvalues of the matrix
S satisfying the aforementioned observations as

i(λmax, λmin) =
λmin + ε

λmax + ε
(3)

where ε is used for the robust function near zero eigenvalue. Too
small value of ε makes the function sensitive to eigenvalues. A rea-
sonable value of ε is 0.1 empirically.

The two eigenvalues represent a scaling term along each or-
thogonal direction in the ellipsoidal representation of the matrix S.
Let SI and SD be the matrix from the image intensity and initial
disparity, respectively. We have four eigenvalues from two matri-
ces: two maximum eigenvalues (λImax, λDmax) and two minimum
eigenvalues (λImin, λDmin). Typically, disparity map shows the
piecewise constant characteristic. Therefore, zero eigenvalues rep-
resenting no local structure (λDmax ≈ λDmin ≈ 0) are observed
in most areas except at disparity edges. At the disparity edges, it
shows the same dominant orientation as that of the image. This
implies that corresponding eigenvectors from SI and SD have the
same direction. Hence, the eigenvalues can be linearly combined as
λmax = λImax + λDmax and λmin = λImin + λDmin. Note that
the eigenvalue computation is performed on the normalized image
intensity and disparity map for direct linear combination. An expo-
nential function based on the combined eigenvalues at the pixel p
can be defined as

s(p) = e−ip(λmax,λmin). (4)

For simplicity, we define this function as a local edge strength
function, which produces a high value along the edges (λmax �
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0, λmin ≈ 0) and a low value on the low (λmax ≈ λmin ≈ 0) and
high-textured area (λmax � 0, λmin � 0).

Finally, the search offset ∆d is adaptively determined according
to four eigenvalues of two structure tensors (SI and SD) as

∆d = [s(p)× L

2
] (5)

where [·] represents nearest integer operator, and L is the full dispar-
ity search range as shown in Fig. 3.

The adaptive search range calculated using (1) fuses the initial
information to the high-scale direction by guiding the next level es-
timation.

3.3. Multi-scale consistency and fusion

In the hierarchical disparity scheme, estimations at different scale
show different results, especially for real-world images. It can be
called scale dimensional inconsistency due to the frequent upsam-
pling/downsampling process. To reduce the scaling inconsistency
as well as the spatial inconsistency, we use spatial-multiscale TV
algorithm. It is based on the augmented Lagrangian method for to-
tal variation image restoration presented in [14], which enforces the
spatial-temporal consistency for video. We adapt it for scale consis-
tency where disparity estimates at several scales are used. We treat
a sequence of multi-scale disparity maps as a space-scale volume:
a three dimensional function f(x, y, s) with the spatial coordinate
(x, y) and the scale dimensional coordinate s. The multi-scale dis-
parity maps are scaled to the same size so that it can be regarded as
one volume. To alleviate spatial and scale dimensional noise while
preserving sharp boundaries, we solve the following regularized l1
minimization problem:

minimize
f

µ||f− g||1 + ||Df||2 (6)

where the vector f is the unknown disparity map, the vector g is the
multi-scale disparity map, and the vector D = [βxDTx , βyDTy , βsDTs ]T

denotes the forward difference operators along the horizontal, ver-
tical, and scaling direction. The parameter µ is the regularization
constant that controls the relative emphasis of the objective and
regularization terms. The parameters (βx, βy, βs) also control the
relative emphasis of the spatial and scale dimensional terms. The
reader can refer to [14] for details of this algorithm.

Through the spatial-multiscale TV, we can fuse different scale
resolutions while maintaining spatial-scaling consistency and pre-
serving edges. It can enhance features which are not visible in an
individual disparity map.

4. EXPERIMENTS AND RESULTS

4.1. Performance results on the Middlebury datasets

We apply 2-level hierarchical scheme to the Middlebury datasets in
order to evaluate quantitatively. All parameters are fixed throughout
the experiment. Fig. 4 shows the disparity results. Fig. 4(b) depicts
initial disparity maps at the level 0 in the proposed multi-resolution
scheme. Fig. 4(c) shows the local edge strength function s(p) de-
fined in (4). Fig. 4(d) depicts the final disparity map guided by the
adaptive search offset map. Fig. 4(e) shows the single-resolution dis-
parity maps. As shown in Fig. 4, the smoothness in the coarse dispar-
ity map is propagated into the next level by the adaptive search off-
set that should be small enough, while the single-resolution scheme
yields errors due to the matching ambiguities in these repetitive and

Fig. 4. Middlebury results. (a) Left image. (b) Initial disparity. (c)
Local edge strength map s(p). (d) Final guided disparity map. (e)
Single-resolution disparity map.

homogeneous regions (red boxes). In the green boxes, the errors and
lost details present in the initial disparity map are recovered without
the error propagation, with the aid of the adaptive search offset that
should be large enough.

Table 1 shows the performance comparison of three schemes:
single-resolution, multi-resolution with fixed search range, and pro-
posed method. The single-resolution method is performed with
full search range, while the hierarchical one is conducted with re-
duced search range (fixed and adaptive). The hierarchical scheme
with fixed search range performs worst. It demonstrates that a
proper choice for search range is crucial for the quality of hierarchi-
cal schemes. Table 2 shows how robust the proposed hierarchical
scheme is to other initial disparity algorithms. For experiment, we
select two well-known algorithms: CostFilter [15] and local adap-
tive support weight (LASW) [16]. These experiments are performed
without filling process, since the left-right filling is not clearly dis-
cussed in [16]. Table 1 and 2 demonstrate that the proposed hierar-
chical scheme achieves similar or slightly better performance while
reducing complexity comparing to the single-resolution scheme.
Table 2 also verifies that the proposed hierarchical scheme does not
depend on initial results. Note that the proposed hierarchical scheme
will be more effective as image resolution increases, as demonstrated
in Section 4.2.

The complexity of the single-resolution disparity estimation [11]
is O(MNR), where M and N are the size of image and support
window, respectively, and R is the disparity search range. The com-
plexity of the 2-level hierarchical disparity estimation decreases to
5
8
O(MNR) if the search range is reduced by 50%. As a result, the

proposed hierarchical scheme is able to have approximately com-
plexity gain of 3

8
O(MNR). It is possible to further decrease the

complexity by applying higher scale pyramid scheme. The hier-
archical scheme can also reduce memory complexity. The single-
resolution scheme has to build the entire Disparity Space Image
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Table 1. Performance comparison (bad pixel rates in non-occlusion
area (nonocc) with threshold of 1 and search range percentage de-
noting the average usage out of the full search range (L)

Dataset Single-res. multi-res. (fixed) Proposed (adapt.)
error (%) search error(%) search error (%) search

Tsukuba 2.10 100% 2.22 50% 2.20 51%
Venus 0.12 100% 0.19 50% 0.11 46%
Teddy 5.46 100% 5.41 50% 5.35 47%
Cones 2.12 100% 2.42 50% 2.30 48%

Table 2. Robustness to other local disparity methods

Dataset
CostFilter [15] LASW [16]

Single-res. Proposed. Single-res. Proposed.
error (%) error (%) search error (%) error (%) search

Tsukuba 2.52 2.76 51% 2.94 2.89 60%
Venus 2.04 1.89 46% 3.98 3.46 53%
Teddy 8.47 8.42 48% 14.3 14.0 56%
Cones 3.62 3.91 49% 9.43 9.45 58%

(DSI) [17] that is a function defined over a discretized version of
disparity space (x, y, d), while the hierarchical scheme constructs
only some part of DSI. There is an additional step for the proposed
scheme: the adaptive search offset (∆d) construction, compared to
the conventional scheme. The additional computation load is negli-
gible. For Tsukuba image, it takes about 12s to complete disparity
estimation as in [11] while it takes about 0.1s to compute ∆d. Cur-
rently, the entire algorithm does not operate in real-time. However,
the local disparity estimation used in the proposed scheme is suitable
for real-time processing using a Graphics Processing Unit (GPU).
The parallel computation would decrease the final processing time
significantly. Note that the consistency enforcement is not necessary
for Middlebury datasets ideally acquired in the laboratory.

4.2. Real-world panoramic results and fusion effects

We use 4-level pyramid for large panoramic views (8, 192×4, 096).
The coarsest image size is 1024 × 512 which becomes a basic size
for partitioning. The partitioned disparity results will be stitched.
Throughout the experiment, the spatial-multiscale parameters are set
to constant values: µ = 1 and (βx, βy, βs) = (1, 1, 2.5).

Fig. 5 illustrates the large panoramic disparity results. Fig. 5(b)
shows the disparity maps of the RealtimeBP [4] which is a well
known hierarchical global method. Unfortunately, the advanced ver-
sion [5] of the RealtimeBP is not available. Fig. 5(c) depicts the
final results of the conventional hierarchical scheme using the same
disparity method as in the proposed method. Fig. 5(f) shows the fi-
nal results of the proposed method. The realtimeBP produces very
noisy disparity maps which may result from the propagation failure
while globally optimizing. The conventional scheme still produces
a lot of errors along object boundaries and staircase errors on the
surface. On the other hand, the proposed scheme shows the best
quality of disparity map compared to the others. Fig. 5(d) and (e)
depict the coarsest and finest maps of the proposed method, respec-
tively. For the real-world image, the spatial-multiscale TV is applied
to enforce scaling consistency. As shown in Fig. 5(f), combining
the multi-scale maps can enhance features as well as produce the

Fig. 5. Disparity results on large real-world panoramic images. (a)
Left panorama. (b) RealtimeBP [4]. (c) Conventional hierarchical
scheme. (d) Coarsest map in the proposed scheme. (e) Finest map.
(f) Final disparity with spatial-multiscale TV.

smooth disparity surface. As a result, it is verified that the two pro-
posed algorithms (the adaptive search offset and spatial-multiscale
TV) contribute to fusing the advantages taken from both coarse and
fine level estimate.

5. CONCLUSION

It is challenging to process large size images such as stereo panora-
mas and moreover, achieve accuracy and reduce complexity at the
same time. To obtain reliable depth maps from large scale images,
we propose an adaptive disparity search range, which is based on the
combined eigenvalues of structure tensor matrix of image intensity
and initial disparity. To enforce the spatial and scaling consistency,
we suggest the spatial-multiscale TV method. Simulation results
verify that the proposed hierarchical scheme fuses the multi-scale
depth maps effectively and also produces a high-quality depth maps.
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