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ABSTRACT
In this paper, we present a sparse coding (SC) inspired method
to reconstruct a high-resolution (HR) image from one single
low-resolution (LR) image. Instead of restricting the coding
coefficients of LR and HR image patches to be equal or lin-
early mapped, we introduce kernel regression to nonlinear-
ly relate the coding coefficients of LR patches and those of
corresponding HR ones in an implicit fashion. Meanwhile,
principal component analysis (PCA) is employed to train in-
dependent dictionaries which can well express image geomet-
rical structure and ensure image sparse property. Experimen-
tal results show that the proposed method can effectively re-
construct image details and outperforms state-of-the-art algo-
rithms in both quantitative and visual comparisons.

Index Terms— super-resolution (SR), sparse coding
(SC), kernel regression, nonlinear mapping

1. INTRODUCTION

Single-frame image super-resolution (SR) aims at inferring
high-resolution (HR) image from one low-resolution (LR) im-
age, which is severely in demand in many applications such
as showing LR images on high definition displays of digital
devices.

It is well known that SR is an ill-posed inverse problem,
which can be typically modeled as: y = DHx+ n, where y
and x denote LR image patch and HR image patch in lexi-
cographic order respectively, H represents blurring matrix, D
is the downsampling matrix, and n is additive noise. Obvi-
ously, the feature dimension of x is much higher than y. To
deal with the severely ill-posed problem, many methods have
been proposed in the past decades. Classical methods based
on interpolation, such as bi-linear interpolation and bi-cubic
interpolation, are widely used in image or video processing
software or hardware products. The advantage of these meth-
ods is their simplicity. However, they tend to cause jaggies
and ringing artifacts since they cannot adapt to varying im-
age structures. Edge-guided interpolation [1] improves visual
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quality by performing interpolation in a chosen direction to
preserve image edge structures. This approach is further e-
volved in [2] by using sparse mixing estimators.

Some prior knowledge has also been applied to regularize
the SR problem due to its ill-posed nature. One popular reg-
ularization is the total variation [3], which assumes that natu-
ral images have small first-order derivatives. This assumption
means that images have piecewise constant structure. Accord-
ingly, this method tends to smooth image details. Sun et al.[4]
propose the gradient profile prior for local image structures
which is effective in preserving image edges. However, these
approaches are limited in modeling the visual complexity of
the natural images [5].

In recent years, learning-based methods show great po-
tentiality in dealing with SR problem. These methods assume
that the lost details in an LR image can be predicted by the
learned information from a specified database. Freeman et al.
propose an example-based learning approach using a Markov
Random Field (MRF) with belief propagation in [6]. Howev-
er, the learning stage is time-consuming. In [7], Chang et al.
adopt the theory of manifold learning, assuming that the man-
ifolds of LR image and corresponding HR image are located
in similar geometrical patterns. Hence, neighbor embedding
is proposed to estimate HR patch as a linear combination of
neighbors. Nevertheless, this method often results in blurring
effects. In [8], a SR algorithm using support vector regres-
sion (SVR) learning strategy in spatial and DCT domain is
proposed. In [9], upscaling is achieved by kernel regression.
However, all these methods are limited in revealing the intrin-
sic and complex relation between the HR and LR images.

2. RELATED WORKS

Recently, the theory of sparse representation has been suc-
cessfully applied to the SR problem. In [5], Yang et al.
employ L1 norm sparsity regularization, utilizing the prior
knowledge that image patches can be coded sparsely with re-
spect to trained dictionary. Moreover, the sparse coefficients
of LR image patches are assumed to be identical to the corre-
sponding HR patches. Essentially, the method transforms the
SR problem into seeking the sparsest solution of an L1 nor-
m optimization problem. This method has been improved in
[10], where a bilevel sparse coding model is proposed to en-
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hance the degree of coupling between the LR and HR feature
spaces. However, the fully coupled dictionary learning model
is inflexible to express image structures of HR and LR image
patches. In [11], A semi-coupled dictionary learning (SCDL)
model is used. In the SCDL model, the LR and HR dictionar-
ies are not fully coupled. A linear mapping is learned to relate
the coding coefficients of LR and HR image patches. In [12],
a nonlocal autoregressive model (NARM) is incorporated in-
to the spare coding (SC) based SR framework. The method
improves the ability of reconstructing edge structures. How-
ever, the identical or linear mapping can not well capture the
intrinsic relation between LR and HR coding coefficients.

Inspired by these work, in this paper, we focus on the SC
based methods for SR problem. Instead of fully coupled or
semi-coupled dictionaries as in the methods mentioned above,
we train the LR dictionary and corresponding HR dictionary
independently by using PCA. Furthermore, we propose a s-
trategy aimed at discovering the intrinsic and nonlinear rela-
tion between the sparse coefficients using kernel regression.

3. SR METHODOLOGY

In this section, the classical SC-based method and its en-
hanced version are first briefly reviewed. Next, the proposed
method will be discussed in detail.

3.1. Sparse Coding

According to [5], image patches can be coded sparsely with
respect to trained dictionary, i.e.,

x = Dhααα
y = Dlααα with ∥ααα∥0 ≪ N, (1)

where Dh ∈Rdh×N is the over-complete HR dictionary, Dl ∈
Rdl×N is the corresponding LR dictionary, N is the atom num-
ber of the dictionary, ααα is the coding coefficients, ∥ · ∥0 de-
notes L0 norm. Let X = {x1,x2, ...,xn}, Y = {y1,y2, ...,yn}
be the HR and LR data matrices respectively, ΛΛΛ = [ααα1, ...,αααn]
be the coefficient matrix. The coupled dictionary can be ob-
tained by solving the following L1 and L2 norm mixing opti-
mization problem:

min
{Dh,Dl ,ΛΛΛ}

∥X−DhΛΛΛ∥2
F +∥Y−DlΛΛΛ∥2

F + γ∥ΛΛΛ∥1, (2)

where γ is the regularization parameter, ∥·∥F and ∥·∥1 denote
Frobenius norm and L1 norm respectively. In (2) the first and
second terms represent data fidelity, and the third one is sparse
regularization term. When reconstructing an HR patch x from
LR patch y, the sparse coefficient vector ααα can be estimated
as:

α̃αα = argmin
ααα

∥y−Dlα∥2
2 + γ∥ααα∥1. (3)

Then, HR image patch is reconstructed by using the coeffi-
cients calculated in (3): x = Dhα̃αα.

From the objective function in (2), we can find that sparse
representation of HR patch is the same as the corresponding
LR one. Actually, the coding coefficients may not be strict-
ly equal. To express image structures in a more flexible way,
Wang et al. introduce a semi-coupled dictionary learning s-
trategy [11] :

min
{Dh,Dl ,W}

∥X−DhΛΛΛh∥2
F +∥Y−DlΛΛΛl∥2

F

+ γ∥Λh −WΛΛΛl∥2
F +λl∥ΛΛΛl∥1 +λλλh∥ΛΛΛh∥1 +λλλW∥W∥2

F

(4)

where λ1, λh, λW are regularization parameters. The cost
function in (4) shows that the coding coefficients of HR and
LR patches have a linear mapping. And the linear mapping
matrix W is pre-learned during training stage. The SCDL
model in [11] has improved the ability to express image struc-
ture by adopting the linear mapping. However, for complex
real-word images, this model is also limited in describing the
relation between LR coefficients ΛΛΛl and HR coefficients ΛΛΛh.

3.2. Our model

To overcome the drawbacks of the models analyzed above,
we propose a new model aimed at finding the intrinsic and
implicit relationship between the sparse coefficients. An in-
dependent dictionary learning strategy and kernel regression
are used to achieve this goal.
Independent Dictionary Learning

In the first stage of learning, we train the HR and LR dic-
tionaries separately. Before learning, we collect thousands of
image patch pairs from several HR natural images. To better
characterize the image local structures, we follow the sug-
gestions of [12] [13] to classify the patches into K subsets
: S = [S1, ...,S j, ...SK ], where S j represents the j-th cluster.
Then we perform PCA on each subset to obtain the local sub-
dictionary D j ( j = 1, ...,K), where D j = [p1, ...,pi, ...,pr], pi
is i-th eigenvector. To better approximate the sparse property,
the value of r is determined by

min
r

∥Sk −DkrΛΛΛkr∥2
2 + γ∥ΛΛΛkr∥1, (5)

where Dkr = Dk is the sub-dictionary of k-th cluster, ΛΛΛkr =
DT

k Sk represents coding coefficients. Obviously, the first term
of (5), i.e., reconstruct error, will decrease if the number of
principal components r increases, however, the sparse regu-
larization term will increase. Therefore, an appropriate value
can be obtained via solving (5). Those sub-dictionaries ulti-
mately form a big over-complete dictionary D = [D1, ...,DK ]
for HR image patches and LR patches respectively.
Kernel Regression Training

In the second stage of learning, Kernel Support Vector
Regression (K-SVR) [14] is adopted to learn the relation be-
tween the coding coefficients. For all the training patch pairs
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Fig. 1: Flowchart for reconstructing HR images.

belong to cluster k, we code these patches as:

ΛΛΛlk = DT
lkSlk = [αααl,1, ...,αααl,M]

ΛΛΛhk = DT
hkShk = [αααh,1, ...,αααh,M]

αααl,i ∈ RNl×1, αααh,i ∈ RNh×1, i = 1, ...,M ,

(6)

where Slk and Shk are training LR and HR patches belong to
cluster k (k = 1, ...,K), M is the number of the patches, Dlk
and Dhk are corresponding sub-dictionaries, and Λlk, Λhk are
LR and HR coding coefficients matrices belong to cluster k.
Nh, Nl are atoms number of HR and LR dictionary respective-
ly. Given training set with M input-output pairs as:

Ω = {(αααl,1,α
j
h,1), ...,(αααl,i,α

j
h,i), ...,(αααl,M,α j

h,M)} (7)

where j ∈ [1,Nh], i ∈ [1,M], αααl,i is input coding vector, α j
h,i

is the associated output value, i.e., the j-th dimensional val-
ue of HR patch coefficients. We try to estimate the function
f : αααl → α j

h. In SVR, the nonlinearity is introduced by map-
ping the data into a high-dimensional feature space F using a
nonlinear mapping Φ : RNl → F . By introducing kernel func-
tion, inner product in feature space can be calculated without
explicitly computing the mapping. In this work, the Gaussian
function of width σ > 0 is adopted as the kernel function,

K (x,y) = exp(−∥x−y∥2
2

2σ2 ). (8)

In SVR, regression function f can be obtained by solving the
following optimization problem :

min
www,b,ε,ε∗

1
2

wwwTwww+C
M

∑
i=1

(εi + ε∗i )

s.t. α j
h,i − (⟨www,ϕ(αααl,i)⟩+b)≤ ε+ εi

(⟨www,ϕ(αααl,i)⟩+b)−α j
h,i ≤ ε+ ε∗i

εi, ε∗i ≥ 0

(9)

where www ∈ F , j ∈ [1,Nh], C is a parameter to tradeoff between
the flatness of the regression function and the upper and low-
er bounds of training errors εi and ε∗i , subject to a margin ε.
The optimization problem (9) can be transformed into a du-
al maximization problem, which is easier to solve. And the
regression function f takes the form

f j(αααl) =
M

∑
i=1

(λi −λ∗
i )K (αααl ,αααl,i)+b (10)

where λ,λ∗ are the Lagrange multipliers. Refer to [14] for
more details. Note that this regression f j aims at inferring
the j-th dimensional value of HR patch coefficients αααh, so we
need to learn a series of regression functions covering all the
dimensional value for the cluster.
Reconstructing HR Image

In the synthesis stage, given an LR image, the HR image
can be reconstructed via dictionary coding and K-SVR. Fig.1
shows the flowchart of synthesis. Firstly, for a given LR patch
yi to be coded, we select the subdictionary of the closest clus-
ter, say Dl,k, to code it, i.e., αααl = DT

l,kyi, the remaining coding
coefficients over other sub-dictionaries is set to 0. Thus a very
sparse representation of yi is obtained. Secondly, Map the s-
parse coefficients αααl to αααh using the learned K-SVR. Then
HR patch is recovered by : x̃i = Dh,kαααh. The HR image X̃
can be initially reconstructed by merging all the HR patches
and averaging the overlapping regions between the adjacent
patches. Finally, a non-local constraint is introduced to fur-
ther improve the SR performance,

X′ = argmin
X

∥X− X̃∥2

s.t. ∥xi −
L

∑
m=1

wmx̃m
i ∥2 ≤ ε,

(11)

where L is the number of similar patches selected, xi, x̃i are
patches in X and X̃, x̃m

i is the m-th most similar patch to xi,
and wm is the non-local weight as defined in [15].

4. EXPERIMENTS

In this section, we provide experimental results which demon-
strate the effectiveness of our method.

4.1. Experimental settings

For the HR reconstruction, zooming factor of 3 is conducted.
HR test images are down-sampled to produce the correspond-
ing LR images. We randomly sample 80000 HR and LR patch
pairs from five training images used in [12]. The size of LR
patch is 3× 3, which is up-sampled to 6× 6 when training,
and HR patch size is 9× 9. Each patch has been subtracted
by its mean value in the feature space. We use K-means to
divide these patches into 39 clusters. Patches in each cluster
have similar structural pattern. For each cluster, we apply P-
CA to train sub-dictionary. And we set λ = 0.1 in (5) to get
the number of principal components.

5837



Fig. 2: Images for test, from (a) to (f): Butterfly, Girl, Parthenon,
Leaves, Lena, Fence

After dictionary learning, we train a series of SVRs for
each cluster. The parameters C, ξ in (9) and σ in (8) are slight-
ly different between each cluster. Cross-validation is adopt-
ed to determine these parameters. As human visual system
is more sensitive to the change of luminance, we only apply
the SR methods to the luminance component and use simple
bi-cubic interpolator for the chromatic components. During
synthesis stage, an overlap of 1 pixel between adjacent LR
patches is adopted.

4.2. Results and discussions

To demonstrate the superiority of our method, we compare it
with methods including bi-cubic, SC [5], SCDL [11] and N-
ARM [12]. Six images shown in Fig.2 are tested. And three
crita, peak signal-to-noise (PSNR), multi-scale structural sim-
ilarity (MS-SSIM) [16] and visual information fidelity(VIF)
[17] are adopted to measure the SR reconstruction perfor-
mance.

Fig. 3: Reconstructed results of Leaves, (a)Input LR image,
(b)Origin HR image, (c)Edge profile inferred, (d)Reconstructed HR
images of our method

Fig. 4: Reconstructed results of Butterfly by different SR method-
s. (a)Input LR image, (b)Origin HR image, (c)Bi-cubic, (d)SC [5],
(e)SCDL [11], (f)NARM [12], (g)Ours.

Table 1: Quantitative comparison on PSNR, MS-SSIM and VIF. For
each block, the first row is PSNR, the second is MS-SSIM, the third
is VIF.

images bi-cubic SC SCDL NARM Ours
B.fly 23.24 23.84 24.42 25.46 25.95

0.9597 0.9729 0.9685 0.9788 0.9812
0.3588 0.4338 0.4125 0.4753 0.4868

Girl 30.19 31.10 31.82 31.24 33.18
0.9417 0.9578 0.9480 0.9420 0.9717
0.3400 0.4256 0.3535 0.3491 0.4387

Leaves 22.87 22.93 23.67 24.61 25.26
0.9574 0.9715 0.9584 0.9705 0.9775
0.3714 0.4311 0.4204 0.4760 0.4919

Lena 29.01 30.00 29.62 30.18 31.03
0.9477 0.9470 0.9531 0.9536 0.9753
0.4187 0.4197 0.4407 0.5086 0.5181

Parth. 24.12 24.06 24.71 24.99 26.46
0.8887 0.9453 0.8975 0.8996 0.9507
0.2181 0.2359 0.2359 0.2732 0.3560

Fence 20.57 20.38 20.91 20.91 22.41
0.7502 0.8819 0.7597 0.7597 0.8887
0.1588 0.2011 0.2009 0.2009 0.2580

For visual illustration, in Fig.3, the edge profile of leaves
learned via coefficients kernel regression is displayed, which
can be observed that both large-scale and fine-scale edges are
well constructed. In Fig.4, the reconstruction results of but-
terfly by different methods are displayed. From these figures,
we can see that SC method introduces unexpected noisy de-
tails, SCDL method leads to severe ringing artifacts. NARM
method causes over-smoothed reconstruction results and los-
es image details, and this phenomenon is more severe in the
other test images. However, our method reduces ringing and
zipper artifacts and obtains better visual quality.

The results of quantitative comparison are listed in Table
1. The SC-based SR methods [5] [11] [12] perform better
than bi-cubic interpolation, since the over-complete dictio-
nary contains high-frequency information pre-learned. And
our method surpasses all the other methods in terms of PSNR,
MS-SSIM and VIF. The performance of our method demon-
strates the effectiveness of nonlinear mapping between sparse
coefficients and independent dictionary learning strategy.

5. CONCLUSIONS

In this paper, we propose a new learning-based SR method.
Instead of coupled or semi-coupled dictionaries, we train in-
dependent ones via PCA, aimed at ensuring image sparsity
property and increasing the flexibility of dictionaries to ex-
press image geometrical structures. More importantly, the in-
trinsic relation between the sparse coefficients of LR and HR
patches is obtained through kernel regression. Furthermore,
we introduce image nonlocal similarity to exploit image re-
dundancies. Experimental results show that our method out-
performs the state-of-the-art algorithms.
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