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ABSTRACT

Increasing spatial image resolution is a widely discussed area

in the field of image processing. In this paper, we present

an efficient reconstruction approach for high-resolution im-

ages, taken with irregularly shielded low-resolution sensors in

a multiview setup. The approach is based on the sparsity as-

sumption, meaning that natural images can be efficiently rep-

resented in a transform-domain using only few coefficients.

Utilizing information from adjacent cameras results in a bet-

ter reconstruction quality for the central high-resolution view.

Since neighboring camera perspectives might differ in illumi-

nation, the information from adjacent views has to be adapted

to the view to be reconstructed. The simulation results show

that a proper incorporation of information from neighboring

views leads to a PSNR gain of up to 2.20 dB compared to a

state-of-the-art singleview reconstruction approach.

Index Terms— Multiview, non-regular sampling, image

reconstruction, sparsity, depth-image based rendering

1. INTRODUCTION

The growing popularity of applications like Free Viewpoint

Television (FTV) and 3D Video (3DV) leads to an increased

number of multiview image and video recordings. Besides

larger costs regarding the camera array, a higher number of

cameras results in large power requirements and leads to a

higher complexity with respect to data storage and transmis-

sion. A common way to reduce complexity of the required

camera array is to synthesize some of the views using depth-

image based rendering (DIBR) [1]. Besides the usual case,

where the reference cameras all have the same spatial res-

olution, a mixed-resolution (MR) setup, consisting of low-

and high-resolution cameras, can be an appropriate alterna-

tive in many scenarios. Thereby, inter-view super-resolution

approaches can be applied to increase the image sharpness of

low-resolution views prior to the synthesis of unknown inter-

mediate perspectives [2]-[3]. However, even in MR setups,

spatially high-resolution reference cameras are required.

To avoid the need of high-resolution sensors in multiview

scenarios, the idea of non-regular sampling can be used. The

main idea is to take only a subset of pixels during image ac-

quisition. This is based on the sparsity assumption of natural

Fig. 1. Top row: from left to right: high-resolution sensor,

low-resolution sensor and irregularly shielded low-resolution

sensors with sampling factors s = { 1

4
, 1

9
, 1

16
} (white areas

being sensitive to light). Bottom row: corresponding image

samples

images, meaning that images can be sparsely represented in

a transform-domain using only few transform coefficients.

The desired high-resolution image has to be reconstructed

afterwards. The authors in [4] presented a reconstruction

approach based on compressed sensing (CS) for images with

randomly distributed sampling points. A combination of CS

and displacement compensation has been proposed by [5]

in order to reconstruct non-regular images within multiview

setups. However, choosing sampling points randomly still

requires an underlying high-resolution image sensor.

In contrast to that, a new image acquisition architecture

for low-resolution sensors based on non-regular sampling has

been proposed [6]. Thereby, three out of four quadrants of

each pixel of a low-resolution sensor are shielded irregularly,

resulting in only one quadrant still being sensitive to light.

The distribution of unshielded area leads to an irregular sam-

pling pattern on a high-resolution grid. However, the sensor

still has the image acquisition complexity and power require-

ments of a low-resolution one. In order to restore the desired

image in high-quality, a reconstruction scheme, named Fre-

quency Selective Extrapolation (FSE), has been used [7].

Fig. 1 visualizes in the first row from left to right the

above mentioned high-resolution sensor, low-resolution sen-

sor and irregularly shielded low-resolution sensors with sam-

pling factors s = 1

4
, s = 1

9
, and s = 1

16
. Thereby, only

the white areas are sensitive to light. Corresponding image

examples are depicted in the second row of the figure. The

sampling factor s describes the number of available sampling
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Fig. 2. Considered scenario: A scene is taken by several cam-

eras with irregularly shielded low-resolution sensors. Addi-

tionally, the corresponding depth information is available.

points. As can be seen, the smaller s is chosen, the less spatial

resolution is required for the underlying low-resolution grid.

In this paper, we propose a novel high-resolution recon-

struction approach for non-regularly sampled images in a

multiview setup. Fig. 2 shows the considered scenario. A

scene is taken by several cameras with irregularly shielded

low-resolution sensors. Since we consider a multiview video

plus depth (MVD) scenario, the corresponding depth infor-

mation is additionally available at each viewpoint. Usually,

the reconstruction quality highly depends on the number of

available sampling points. Hence, the depth maps are used in

order to project pixels from neighboring reference cameras

onto the image plane of the destination view. By adapting

the synthesized information to the image to be reconstructed,

new sampling points are defined and used as additional sup-

port for the final image reconstruction.

The rest of the paper is organized as follows. Section 2

covers the basic principle of using FSE for the reconstruc-

tion of irregularly sampled images. Section 3 presents our

novel multiview reconstruction scheme. Simulation results

are given in Section 4. The paper concludes with Section 5.

2. PREVIOUS WORK: RECONSTRUCTION OF

IRREGULARLY SAMPLED IMAGES USING FSE

This section presents the main idea of using the Frequency

Selective Extrapolation (FSE) for the reconstruction of im-

ages which are only partially known [7].

The reconstruction aims at extrapolating the given image

content into the shielded areas, ending up with a dense high-

resolution image. The FSE is carried out blockwise on the

high-resolution grid, using an optimized processing order, ac-

cording to [8]. For reconstructing the current block, the ex-

trapolation area L which is exemplarily shown in Fig. 3, is

considered. The extrapolation area can be subdivided into

three groups. First, all available sampling points which are

grouped in the support area A. Second, all pixel positions that

have already been reconstructed, forming the reconstructed

area R and finally all samples that still have to be recon-

structed, subsumed in the loss area B. The spatial image co-

ordinates are thereby denoted as (m,n).

Support area 

Reconstructed area

Loss area

m

n 

Fig. 3. Extrapolation area L consisting of support area A,

reconstructed area R and loss area B. The current block to be

reconstructed is marked in red.

Then, FSE aims at generating the parametric model

g (m,n) =
∑

k∈K

ckϕk (m,n) (1)

as weighted superposition of two-dimensional Fourier basis

functions ϕk (m,n) with corresponding weights ck. The in-

dices of all available basis functions are summarized in the

set K. The model is generated iteratively. In every iteration

the basis function that maximizes the decrease of the residual

between the current model and the available signal is chosen

and the corresponding weight is estimated. In this context, an

exponentially decaying weighting function according to

w (m,n) =















ρ̂

√

(m−
M−1

2
)2+(n−N−1

2
)2 ∀ (m,n) ∈ A

δρ̂

√

(m−
M−1

2
)2+(n−N−1

2
)2 ∀ (m,n) ∈ R

0 ∀ (m,n) ∈ B
(2)

is used in order to control the influence of each individual

pixel position on the reconstruction process. Thereby, the

speed of decay is controlled by ρ̂ and the size of the extrapo-

lation area is written as M × N . Hence, pixels farther away

from the origin of the block get less influence on the model

generation. The influence of already reconstructed samples

is additionally controlled by the factor δ. As proposed in

[6], due to the small number of available sampling points,

an additional probability is assigned to each basis function.

In order to enforce a smooth reconstruction, the probability

decreases for basis functions with increasing frequency.

The reconstruction quality of the above described FSE

highly depends on the number of available sampling points.

Therefore, the next section shows how information from

neighboring cameras can be utilized in order to achieve a

better reconstruction quality for the desired central high-

resolution view.

3. PROPOSED MULTIVIEW RECONSTRUCTION

The basic overview of our proposed reconstruction scheme is

given in Fig. 4. Without loss of generality, the scene is taken

by three low-resolution cameras with irregularly shielded sen-

sors. The images are therefore denoted as left image l(m,n),
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Fig. 4. Proposed multiview reconstruction scheme.

central image c(m,n) and right image r(m,n) while the cor-

responding depth maps are indicated by dl(m,n), dc(m,n),
and dr(m,n), respectively. In a first step, the sampling points

of the neighboring reference views are projected onto the im-

age plane of the central view c(m,n) using DIBR, as pre-

sented in [1]. Therefore, let (ml, nl) be a pixel position from a

sampling point of the left reference view. Note that the warp-

ing process is equivalent for the right view. By utilizing the

corresponding depth map entry, the projection can be written

as

zc





mc

nc

1



= Ac



RcR
−1

l



z ·A−1

l





ml

nl

1



− tl



+ tc



 (3)

The intrinsic camera matrices are denoted as A, R describes

the rotation matrices and t are the translation vectors of the

cameras with respect to the origin. The left and center camera

are indicated by the corresponding subsrcipts l and c, respec-

tively. The physical depth value, denoted as z, is computed

from the corresponding depth map entry dl(ml, nl) [1].

By applying (3) to the sampling points of both reference

views l(m,n) and r(m,n), two synthesized images c̃l (m,n)
and c̃r (m,n) are obtained and can be considered as addi-

tional sampling information for the central destination view.

For combination of the two synthesis results, a simple

depth-based comparison is used. A pixel is taken from one

of the reference views, if no information is available from the

other one. If sampling points from both reference images are

projected to the same location in the desired central view, the

one which is more to the foreground occludes the background

pixel. The combination of c̃l (m,n) and c̃r (m,n) is denoted

as c̃w (m,n).
The most intuitive way to reconstruct the central image

would be to apply the above described FSE on an extended

set of sampling points, consisting of both, original sampling

points from c(m,n) and projected sampling information from

c̃w (m,n). For later comparison, this approach is indicated

by FSE-DIBR. However, adjacent views might differ in illu-

mination and the used depth information can not be assumed

to be error-free. Since erroneous sampling points would neg-

atively affect the final reconstruction quality, the synthesized

information in c̃w (m,n) has to be adapted to the desired

central view to be reconstructed. Therefore, the irregularly

sampled central view c(m,n) is first interpolated using fast

bilinear interpolation. This results in a coarse approximation

of the desired high-resolution image. The interpolated im-

age is denoted as ĉint(m,n) and is further used to adapt the

information from c̃w (m,n) according to

c′ (m,n) =



















c (m,n) , ∀ (m,n) ∈ Sc

t · c̃w (m,n)+
+(1− t) · ĉint (m,n) , ∀ (m,n) ∈ Sc̃w ∧ S̄c

0, else
(4)

where c′(m,n) is the extended central image including sam-

pling information from the reference views. S defines the

set of available sampling points and t describes a weighting

factor in the range between 0 and 1. Thus, for the initially

shielded pixel positions on the high resolution grid, new sam-

pling points are obtained as weighted average of combined

warped neighboring information and the interpolated image

ĉint(m,n). The larger t is chosen, the more weight is as-

signed to the warped information from the neighboring refer-

ence cameras. Setting t = 1 results in FSE-DIBR.

However, potentially unreliable depth information might

especially occur at depth boundaries. Therefore, the above

described weighted averaging is only done for pixel positions

which have at least a distance of p pixels to the nearest depth

edge.

After incorporating additional information from the refer-

ence camera perspectives, the FSE algorithm is applied on the

new extended set of sampling points c′(m,n), resulting in the

final reconstruction result ĉmv(m,n).

4. SIMULATION RESULTS

The proposed reconstruction scheme has been tested for the

multiview datasets art, books, dolls, and moebius [9]. For

each dataset, the views indexed by 1, 3, and 5 have been

chosen. The sampling factor s has been varied in the range of
1

4
to 1

16
. The irregularly shielded low-resolution images were

created by multiplying the original high-resolution images

with corresponding sampling masks. For the FSE, we have

used 100 iterations and a blocksize of 4. The extrapolation

area has been 28 samples wide. The weighting function has

declined with ρ̂ = 0.7. Already reconstructed samples have

been additionally weighted by a factor δ = 0.8. For the basis

functions, the FFT size has been set to 32×32. The weighting

factor t has been set to 0.6, 0.7, and 0.8 for s = 1

4
, s = 1

9
,

and s = 1

16
, respectively. Since the interpolation quality
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Fig. 5. Visual comparison: From left to right: s = { 1

4
, 1
9
, 1

16
}, top row: non-regular input and result of singleview reconstruction

(FSE-SV), bottom row: non-regular input and result of proposed multiview reconstruction

also depends on the number of available sampling points, the

information from adjacent views is weighted higher, the less

information from the central view is available.

First, the approach has been tested with full-resolution

(FR) depth maps. However, high-resolution depth images are

typically obtained via stereo matching approaches which as-

sume images to be completely known. Thus, the method has

been also tested with simulated Time-of-flight (ToF) depth

data. Since ToF cameras only provide a low spatial reso-

lution, the originally high-resolution depth maps have been

downsampled by a factor of 8 in both spatial dimensions. In

order to remain sharp edges, the downsampled depth maps

have been resized using nearest neighbor interpolation. The

depth distance parameter p has been set to 2 for FR depth

maps and to 5 for the ToF depth images.

Table 1 gives the PSNR results for all considered datasets,

various sampling factors s and different depth resolutions.

Thereby, our proposed multiview reconstruction approach

has been compared with both, the singleview reconstruction

(FSE-SV) [6] and the FSE-DIBR approach. PSNR values are

calculated with respect to the desired high-resolution central

image. For all simulations, the proposed reconstruction algo-

rithm outperforms the FSE-SV approach and the FSE-DIBR

method. Compared to FSE-SV, average gains of 0.85 dB,

1.62 dB, and 1.82 dB have been achieved for the various

sampling factors when using ToF depth maps. The maximum

gain is 2.20 dB and has been achieved for the books dataset

and s = 1

16
. Compared to FSE-SV, larger gains can be ob-

tained for larger sampling factors. It has to be emphasized

that for s = 1

16
, 93.75% of the desired high-resolution im-

age are unknown and thus have to be reconstructed. If FR

depth maps can be assumed, even higher PSNR gains can be

achieved, since depth information near edges is more reliable

than for ToF depth data. This leads to a maximum gain of

2.44 dB for books and s = 1

16
.

The final visual quality can be observed in Fig. 5 for a

detail of the books dataset. The images correspond to the

case of using ToF depth data for the synthesis process. The

figure shows from left to right both, the available sampling

points and the reconstruction results for all considered sam-

pling factors. Thereby, the first row depicts the singleview

reconstruction, while the bottom row shows the proposed

multiview reconstruction approach. It can be seen that es-

Table 1. PSNR evaluation in dB for all considered data sets,

various sampling factors s, and different depth resolutions

FSE-

SV

FSE-

DIBR

pro-

posed

FSE-

DIBR

pro-

posed

FR depth ToF depth

s
=

1 4

art 37.03 37.14 37.82 36.96 37.61

books 34.90 35.38 35.89 35.18 35.78

dolls 35.23 35.70 36.35 35.56 36.18

moebius 36.18 36.76 37.38 36.55 37.17

avg. ∆ - 0.41 1.03 0.23 0.85
s
=

1 9

art 32.83 34.24 34.51 33.88 34.14

books 30.90 32.82 32.99 32.54 32.79

dolls 31.14 33.03 33.30 32.70 32.96

moebius 32.52 34.14 34.46 33.65 33.97

avg. ∆ - 1.71 1.97 1.35 1.62

s
=

1 1
6

art 30.28 32.08 32.25 31.63 31.79

books 28.57 30.86 31.01 30.61 30.77

dolls 28.72 30.92 31.12 30.53 30.73

moebius 30.30 32.23 32.46 31.60 31.82

avg. ∆ - 2.07 2.26 1.64 1.82

pecially in case of larger sampling factors, the incorporation

of neighboring views is highly important in order to obtain

additional sampling points and thus to reliably reconstruct

sharp edges and image details.

As already mentioned, in order to restrict complexity, fast

bilinear interpolation has been used for generating the inter-

polation result ĉint(m,n). The final reconstruction quality

might be further improved if a more powerful but probably

also more complex interpolation technique is used instead.

5. CONCLUSION

In this paper, we proposed a novel reconstruction scheme for

multiview images taken with non-regular sampling sensors.

The approach avoids the need of high-resolution sensors and

thus provides an opportunity to reduce the costs in multiview

scenarios. The incorporation of neighboring views leads to

a significant gain, both in PSNR and visual quality. Consid-

ering ToF depth data, our framework achieves a maximum

PSNR gain of 2.20 dB for a sampling factor of s = 1

16
com-

pared to a state-of-the-art singleview reconstruction approach.
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