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ABSTRACT

Most digital cameras use a single sensor coupled with a Color
Filter Array (CFA) to capture images, and apply demosaick-
ing to interpolate the full color images. In reality, the CFA
image is noisy, which causes problems in the demosaicking
process. This paper proposes a Joint Denoising and Demo-
saicking based on inter-Color correlation (JDDC) scheme.
We propose a new framework that linearly combines an ex-
tracted luminance image and a low-passed RGB images to get
a full color image. Given the noise in the extracted luminance
image and the low-passed RGB images are non-stationary
and partially correlated, we modify the classical Non-Local
Means (NLM) filter to denoise the extracted luminance im-
age and the low-passed RGB images before the combination.
Experimental results verify the effectiveness of the proposed
scheme both objectively and subjectively.

Index Terms— CFA, Bayer, Denoising, Demosaicking.

1. INTRODUCTION

Digital color images usually have three color values (i.e. red,
green and blue) at each pixel location. To reduce the cost of an
imaging system, a Color Filter Array (CFA) is overlaid on a
single sensor to capture only one color at each pixel location.
There are several patterns of CFA. The most commonly used
pattern is the Bayer pattern CFA [1] as shown in Fig. 1(a).
To recover the full color image, the other two missing color
values must be interpolated at each pixel location. Such an
interpolation process is called demosaicking.

Many demosaicking algorithms [1] have been proposed in
the literature. However, most of them assume noiseless CFA
data, which is rarely true in reality. For almost all kinds of
digital imaging devices, contaminative noise is inherent due
to the process of converting photons to electrons and the elec-
tronic amplifier noise etc. In order to obtain a full color image,
the most straightforward solution is to perform demosaicking
first and then denoising, since there are many effective denois-
ing algorithms existing for noisy gray-scale or full color im-
ages. However, the presence of noise poses a great challenge
to the demosaicking task, and the compound noise produced

in demosaicking is difficult to remove by the subsequent de-
noising process. The second approach is to perform denois-
ing first and then demosaicking. Many adavanced monochro-
matic and color image denoising methods have been proposed
in the literature [2][3]. However, they are not directly ap-
plicable to CFA images due to the underlying mosaic struc-
ture of CFA. One simple solution is to partition the CFA im-
age into one red, one blue, and two green sub-images, and
then denoise them separately. However this solution does not
well exploit the spatial and inter-channel correlation proper-
ties in natural images. [4] designed a denoising algorithm
for the CFA images based on the principle component analy-
sis (PCA) of local image statitics. By adaptively computing
the co-variance matrix of each variable block, the PCA could
transform the noisy signal into another space to compact the
signal energy and suppress the noise effectively.

Another alternative solution is to perform denosing and
demosaicking jointly. In light of the observation that im-
age interpolation and denoising are both estimation problem,
[5] develops a novel technique to combine demosaicking and
denoising procedures systematically into a single operation
through the total least squares (TLS) filter using available
neighboring noisy pixels. Later, [6] proposed a joint scheme
outperformed [5]. [6] estimates the color difference signal
using the Minimum Mean Square Error (MMSE) technique
which exploits both spectral and spatial correlations to simul-
taneously suppress the sensor noise and interpolation error.
Then a wavelet-based denoising process is applied to remove
the channel-dependent noise.

In this paper, we propose a novel Joint Denoising and De-
mosaicking based on inter-Color correlation (JDDC) scheme.
With the assumption that the high frequency components of
R, G, and B images resemble each other in a natural image [8],
JDDC linearly combines the extracted luminance and low-
passed RGB images to get a full color image. Given the noise
in the extracted luminance and low-passed RGB images are
non-stationary and partially correlated, we modify the Non-
Local Means (NLM) filter to denoise the extracted luminance
and low-passed RGB images before the combination. Simu-
lation results show that the proposed scheme achieves better
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Fig. 1: (a), Bayer CFA; (b), a CFA image; (c), frequency representation of (a); (d), an extracted luminance image of (b).

performance compared to previous reported schemes.
The rest of this paper is organized as follows. In Section 2,

the frequency analysis of CFA images [7] is introduced. Sec-
tion 3 introduces the detail of our proposed scheme. Finally,
experimental results are shown in Section 4, with a conclusion
drawn in Section 5.

2. FREQUENCY ANALYSIS OF CFA IMAGES

Denote the clean pixel value of an RGB image as Cq(i, j),
where q ∈ S : {r, g, b} and location (0, 0) indicates the loca-
tion of the top left pixel inside a image. Its CFA image can be
viewed as subsampling the R, G, B color values at each pixel
location with the sampling function mq(i, j),

mr(i, j) = [1 + (−1)i][1 + (−1)j ]/4

mg(i, j) = [1− (−1)(i+j)]/2 (1)
mb(i, j) = [1− (−1)i][1− (−1)j ]/4.

Therefore, the representation of a CFA image is

I(i, j) =
∑
q∈S

Cq(i, j)mq(i, j)

=
1

4
[Cr(i, j) + 2Cg(i, j) + Cb(i, j)]

+
1

4
[Cr(i, j)− 2Cg(i, j) + Cb(i, j)](−1)(i+j)

+
1

4
[Cr(i, j)− Cb(i, j)][(−1)i + (−1)j ]. (2)

We define Y (i, j) = 1
4 [Cr(i, j) + 2Cg(i, j) + Cb(i, j)],

C1(i, j) =
1
4 [Cr(i, j)− 2Cg(i, j)+Cb(i, j)], and C2(i, j) =

1
4 [Cr(i, j) − Cb(i, j)]. Let .̌ represents the discrete time
Fourier transform. Then the Fourier transform of I is

Ǐ(u, v) = Y̌ (u, v) + Č1(u− π, v − π)

+Č2(u− π, v) + Č2(u, v − π). (3)

A typical frequency representation of a CFA image Fig.
1(b) is shown in Fig. 1(c). It can be seen that the luminance
component Y and the chrominance components C1, C2 cover
different regions in the frequency domain. Therefore, it is
possible to filter out a luminance image from the CFA image.

Although an adaptive filter may extract the luminance image
with higher quality, later in the experiment, we use a fixed
5x5 filter as proposed in [7] for simplicity .

3. PROPOSED SCHEME

As in Fig. 1(d), the extracted luminance image contains de-
tails of the full color image, i.e. the high frequency infor-
mation of the image. For a full color image of natural scene,
the high frequency components of different color channels are
observed to resemble each other [8]. Motivated by this obser-
vation, our proposed JDDC scheme adds the high frequency
information from the luminance image onto the low-passed
R, G, and B images to get the full color image. Denoising the
extracted luminance image and the low-passed RGB images
are needed before the combination.

3.1. Estimating color values via inter-color correlation

Each color channel, i.e. R, G and B, can be decomposed into
a low frequency component and a high frequency component.
With the assumption that the high frequency components of
R, G, and B resemble each other, we have

Cq − Clp
q = Cp − Clp

p , q, p ∈ S (4)
where Clp

q represents the low frequency component of the
color channel q. Taking Eq. 4 into the definition of Y (i, j),
i.e. Y (i, j)=1

4 [Cr(i, j)+2Cg(i, j)+Cb(i, j)], Cq(i, j) can thus
be estimated as

Ĉq(i, j) = Y (i, j)− 1

4
αT

q Clp(i, j), (5)

where the vector Clp = [Clp
r Clp

g Clp
b ]T , αr = [−3 2 1]T ,

αg = [1 − 2 1]T and αb = [1 2 − 3]T . The low-passed
RGB image Clp

p can be obtained via a low pass filter a,

Clp
q (i, j) = ((Cq ·mq) ∗ a)(i, j) (6)

=
∑

(k,l)∈Ba
i,j

Cq(k, l)mq(k, l)a(k − i, l − j),

The operation ∗ means the convolution operation. Set Ba
i,j

contains the pixel indices that kernel a will cover when cal-
culating the convolution for location (i, j).

However, for the noisy CFA image, the luminance image
Y (i, j) and the noise free low-passed color images Clp

q are
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Fig. 2: Modified search region of the NLM filter.

not directly available. Therefore we perform denoising on
an extracted luminance image and the noisy low-passed RGB
images before applying the principle developed in Eq. 5 to
estimate the full color image.

3.2. Denoising with modified NLM filter

In this work, we use the NLM filter for the denoising purpose.
The NLM filter is firstly proposed in [2] for monochromatic
image denoising and has demonstrated considerable noise re-
duction capability. In our problem, the noise on the extracted
luminance image and the low-passed images are found to be
non-stationary and partially correlated. In our JDDC scheme,
we modify the NLM filter by adjusting its search region and
the definition of the weight function, so that the weight can
be easily calculated in the modified NLM filtering.

Let the extracted luminance image of image I be L

L(i, j) = (I ∗ h)(i, j) =
∑

(t,s)∈Bi,j

I(t, s)h(t− i, s− j). (7)

The filter h is used to extract the luminance image from the
CFA image. Set Bi,j contains the pixel indices that filter h
covers in the convolution for location (i, j). According to [7],
filter h is designed with a constraint that the ratio of the used
R, G and B pixels are exactly 1:2:1 in the generated L(i, j) at
different locations, which is the same as Y (i, j). Thus, if we
replace Y (i, j) by L(i, j), Eq. 5 approximately holds true.

We assume the noisy color values of a full color im-
age is C̃q(i, j) = Cq(i, j) + nq(i, j), where nq is the sta-
tionary signal-independent noise with zero mean and vari-
ance σ2

q . σ2
q can be different for different channels. Then

the noisy CFA image is Ĩ(i, j) =
∑

q∈S C̃q(i, j)mq(i, j) =
I(i, j) + N(i, j), where N(i, j) =

∑
q∈S nq(i, j)mq(i, j).

The CFA image noise N(i, j) is obviously uncorrelated.
N(i, j) is non-stationary since its variance σ2

N (i, j) =∑
q∈S mq(i, j)σ

2
q (i, j) is not a constant, but location depen-

dent. When mq(i, j) = 1, σ2
N (i, j) = σ2

q (i, j).
Let the noisy extracted luminance image of Ĩ be L̃(i, j)

L̃(i, j) = (Ĩ ∗ h)(i, j) = Y (i, j) + nL(i, j). (8)

Noise nL(i, j) =
∑

(t,s)∈Bi,j
N(t, s)h(t−i, s−j) is for the

noisy extracted luminance image with zero mean and variance
σ2
L. nL(i, j) is also partially correlated since the overlapping

Fig. 3: Test images.

property of set B(i, j) at different locations.

σ2
L(i, j)= E[nL(i, j)

2] = E[(
∑

(t,s)∈Bi,j

N(t, s)h(t−i, s−j))2]

=
∑

(t,s)∈Bi,j

h2(t−i, s−j)E[N2(t, s)] (9)

When h is selected to be the fixed 5×5 filter designed by [7],

σ2
L(i, j)=


1

4096 (44σ
2
r + 2528σ2

g + 44σ2
b ), if mg(i, j) = 1

1
4096 (2464σ

2
r + 88σ2

g + 64σ2
b ), if mr(i, j) = 1

1
4096 (64σ

2
r + 88σ2

g + 2464σ2
b ), if mb(i, j) = 1

By using the NLM filter, the estimated clean L̂(i, j) of
noisy L̃(i, j) is achieved by the weighted average of multiple
noisy L̃(k, l) in a predefined search region:

L̂(i, j) =

∑
(k,l)∈Bs

i,j
w(i, j, k, l)L̃(k, l)∑

(k,l)∈Bs
i,j

w(i, j, k, l)
, (10)

with w(i, j, k, l) being the weight for L̃(k, l) when computing
L̂(i, j), and Bs

i,j being the set of location indices of reference
pixels. The weight w(i, j, k, l) depends on the resemblance
between a local noise-free patch centered at (i, j) and a lo-
cal noise-free patch centered at (k, l). Higher resemblance
leads to a larger weight. However, in practice, only noisy pix-
els are available. Then a natural approach is to use the sum
of squared difference between noisy patches as an approxi-
mation to measure the resemblance between corresponding
noise-free patches. When the noise is correlated, [9] proposed
to replace the Euclidean distance between the current patch
and the reference patch by the Mahalanobis distance, which
takes the noise co-variance matrix into account for whitening
the noise. However, in the whitening process, the inverse of
the co-variance matrix needs to be calculated. For example,
when the patch size is 5×5, the size of the co-variance matrix
is 25×25. In our problem, nL(i, j) is partially correlated and
also non-stationary, which means high computation complex-
ity for inverse calculation of the co-variance matrix.

In JDDC, we propose to modify the search region in the
NLM filtering process, so that the co-variance matrix between
the current patch and the reference patch is diagonal. The
inverse co-variance matrix is then also diagonal and can be
easily calculated. The property of such a modified search re-
gion is that the noise nL in the reference patch and the current
patch are uncorrelated. Let the size of the patch, the size of
filter h, and the outer boundary length of the search window
be P×P , H×H , and W×W respectively. For the current pixel
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location (i, j), the modify search region Bs
i,j includes the pix-

els sandwiched between a (2P+2H+1)×(2P+2H+1) region
and a W ×W region, both of which are centered at location
(i,j). For example, as shown in Fig. 2, two cross points are
the current pixel L̃(i, j) and a reference pixel L̃(k, l) with l=j
and k<i. The local patches of L̃(i, j) and L̃(k, l) are denoted
as Ωi,j and Ωk,l. For the noise nL(i− H

2 , j−
H
2 ) in Ωi,j , it

is contributed by the noise N(t, s) with (t, s)∈Bi−H
2 ,j−H

2
, i.e.

noise N in an H×H region that kernel h covers when calculat-
ing L̃(i−H

2 , j−
H
2 ). Similarly, noise nL(k+

H
2 , l−

H
2 ) in Ωk,l

is contributed by the noise N(t, s) with (t,s)∈Bk+H
2 ,l−H

2
.

Therefore, as long as the horizontal distance between L̃(i, j)
and L̃(k, l) are larger than P+H , i.e (i−k) > (P +H), the
noise in Ωi,j and the noise in Ωk,l will be uncorrelated. The
similarity measurement can therefore be defined as

d(i, j, k, l)=
∑

b1,b2∈B1

[L̃(k+b1, l+b2)−L̃(i+b1, j+b2)]
2

σL(i+b1, j+b2)σL(k+b1, l+b2)
.

(11)
Set B1 = {0, 1, ..., P

2 }. Note that, we will consider the cur-
rent pixel as a reference pixel as well, with d(i, j, i, j) = 0.
Correspondingly, the weight w(i, j, k, l) is defined as

w(i, j, k, l) = exp{−d(i, j, k, l)

Ng2
} (12)

where N is the total number of pixels in a patch, g acts as the
filtering parameter.

For the denoised estimates of the low-passed RGB im-
ages, the same process of denoising L̃ can be used. Taking L̂
and the denoised low-passed average color images into Eq. 5
instead of Y and Clp, we can get a denoised full color image.

4. EXPERIMENTAL RESULTS

The test images we used to evaluate the proposed scheme
are listed left to right and from the first row to the sec-
ond row in the order of Image 1 to Image 8 as shown in
Fig. 3. The noisy CFA images of the test images are ob-
tained by mosaicking those full color images in the Bayer
pattern, and adding with the simulated white Gaussian noise.
The peak signal-to-noise ratio (PSNR) of the estimated full
color image with respect to the original noise-free image is
used as the objective measure. We compared our proposed
JDDC scheme with several schemes, including demosaick-
ing [10]+denoising [11] scheme, an advanced joint denoising
and demosaicking scheme [6], denoising using the NLM fil-
ter on the four sub images of the CFA image+demosaicking
[10], denoising [4]+demosaicking [10], and an extended vari-
ant of our approach in which the recovered RGB image is mo-
saicked again and then demosaicked by [10] for a fair compar-
ison with [4]+[10] scheme. Table 1 shows that our proposed
JDDC and its variant provides better PSNR performance than
other schemes on average. Some visual comparisons of dif-
ferent schemes are demonstrated in Fig. 4. Results from our

Table 1: PSNRs of the reconstructed RGB images.

Image σr ,σg ,σb=15,20,25

[10]+[11] [6] Proposed
JDDC

SubNL
+[10]

[4]+[10]
Proposed
JDDC
+[10]

1
R 30.98 33.66 33.38 32.27 33.90 33.37
G 30.79 34.52 35.85 32.29 35.21 35.88
B 29.62 32.61 35.02 31.21 34.47 35.08

2
R 31.00 35.12 35.43 32.60 35.52 35.45
G 30.79 35.11 35.80 32.37 35.51 35.86
B 29.88 32.96 34.86 31.43 34.85 34.90

3
R 30.73 34.66 34.88 32.19 34.84 34.92
G 30.56 34.44 34.75 31.99 34.63 34.81
B 30.22 33.14 34.51 31.52 34.51 34.58

4
R 31.81 34.11 34.39 32.66 34.51 34.44
G 31.55 34.66 35.83 32.85 35.42 35.89
B 30.79 33.03 34.99 31.78 34.79 35.04

5
R 30.86 32.57 32.81 31.63 32.77 32.77
G 30.53 32.65 33.07 31.39 32.81 33.09
B 29.74 31.75 32.99 30.87 32.68 32.96

6
R 34.00 35.69 36.11 34.71 36.10 36.15
G 33.48 35.81 36.31 34.21 36.14 36.37
B 32.21 33.19 34.69 32.51 34.86 34.85

7
R 30.62 33.09 33.31 31.74 33.28 33.31
G 30.42 33.19 33.61 31.58 33.41 33.63
B 29.90 31.96 32.88 30.90 32.83 32.87

8
R 30.91 32.94 33.26 31.71 33.11 33.27
G 30.52 32.72 33.17 31.38 32.88 33.20
B 29.84 31.60 32.22 30.67 32.42 32.23

Average 30.91 33.55 34.34 32.02 34.23 34.37

(a) Original (b) [6] (c) Proposed JDDC

(d) SubNL+[10] (e) [4]+[10] (f) Proposed
JDDC+[10]

Fig. 4: Visual comparison of different schemes on Image 2.

proposed JDDC scheme and its variant also provide sharper
edges and cleaner smooth regions.

5. CONCLUSION

A simple JDDC scheme is proposed. The full color values of
each pixel are estimated by a linear combination of an esti-
mated luminance image and the estimated low-passed RGB
images. Both subjective and objective experimental results
demonstrate that the proposed scheme is effective in the joint
denoising and demosaicking task.
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