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ABSTRACT

The frequency diversity exhibited by cyclostationary signals
is exploited in this paper. A novel rank-1 frequency-domain
representation of a digital waveform is proposed to address
the generalized likelihood ratio (GLR) detection of a cyclo-
stationary signal with unknown white noise. With the aim of
avoiding the well-known sensitivity of cyclostationary-based
detectors to frequency-selective fading channels, a parametric
channel model based on the coherence bandwidth is adopted
and incorporated in the GLR test. The proposed detector out-
performs the classical spectral correlation magnitude detec-
tors by exploiting the rank-1 structure of small spectral co-
variance matrices.

Index Terms— GLRT, LMPIT, cognitive radio, cyclosta-
tionarity based detection, spectral correlation.

1. INTRODUCTION

Reliable primary users (PU) signal detection under challeng-
ing situations such as low signal-to-noise ratio (SNR), shad-
owing and fading is a key enabling factor in interweave cogni-
tive radio [1]. This has motivated recent attention on the spe-
cific problem of PU signal detection in white noise. A variety
of detection methods have been proposed for several degree
of side information: while enhanced capabilities are achieved
with higher degrees of side information, these methods suffer
from higher sensitivity to model inaccuracies.

The adoption of the PU model is a relevant issue, and
may include features such as the transmitted power spectral
density [2], cyclostationarity, modulation type, etc. [1]. On
the other hand, the frequency-selective and time-varying na-
ture of the wireless propagation channel can severely affect
the detectors’ performance [3]. The use of multiple antennas
has received attention in order to improve performance [4–7].
The multiple antenna formulation leads to low rank spatial
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covariance matrices. This fact is exploited to improve, for
instance, the noise floor estimation, as one has access to a
noise subspace which is free of the signal component. In the
single antenna case, the specification of a model for the tem-
poral autocorrelation function of PU and noise components
is required. By resorting to asymptotic properties of Toeplitz
matrices, [8] shows that detection can be formulated from the
signal periodogram, smoothed by an appropriately selected
spectral mask. This yields to significant saving on compu-
tational complexity, which is specially interesting in order to
make cognitive radios feasible.

This paper formulates the single-antenna detection prob-
lem of a second-order cyclostationary signal by taking benefit
from the mature and recent detection theory advances in array
processing. This provides an original formulation of cyclosta-
tionary detection based on a vectorial frequency-domain pro-
cessing that leads to a signal model which exhibits low rank
structure. Particularly, the rank-1 structure for pulse-shaped
digital modulations considered in our formulation plays the
equivalent role of the spatial signature typically found in the
array processing field.

Cyclostationarity feature detection had originally emerged
as a tool to relax the assumptions on the noise statistics [9],
and it has hence gained recent attention in the field of spec-
trum sensing for weak signals [10, 11] and unknown noise
statistics [7, 11, 12] to achieve robustness to SNR walls [13].
In particular, the scheme reported in [10] and method based
on [6, 11] are considered as benchmarking. The frequency-
domain formulation adopted in this work was introduced by
the authors in [14] in the SNR estimation problem.

2. PROBLEM FORMULATION

This work addresses the detection of a digital pulse-shaped
modulated signal as

H
0

: y(t) = n(t) (1a)
H

1

: y(t) = n(t) + x(t), (1b)

where n(t) is a wide sense stationary (WSS) circular noise of
power spectral density (PSD) N

0

/2 inside the band of inter-
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est, and x(t) is given by

x(t) =
p
�Th(t) ⇤

X

n

a[n]p(t� nT ). (2)

In (2), � > 0 is the signal strength, T is the symbol inter-
val, h(t) is the complex propagation channel, a[n] is the unit
variance symbol sequence, and p(t) is the unit energy mod-
ulation pulse. This signal model is valid for a wide class
of digital modulations such as pulse amplitude modulation
(PAM), quadrature amplitude modulation (QAM) and ampli-
tude phase shift keying (APSK). The two-sided bandwidth of
x(t) is B = (1 + ↵)/T , where 0 < ↵ < 1 is the excess
bandwidth or roll-off parameter.

2.1. Cyclostationary Signal Background

This section summarizes the main concepts behind cyclosta-
tionarity. The reader is referred to [15–19] for more details
on this subject. The cyclic spectral density (CSD) of a pro-
cess x(t) is defined as the cross spectral density S↵

x (f)
.
=

limT0!1 E
⇥
XT0

�
f + ↵

2

�
X⇤

T0

�
f � ↵

2

�⇤
, where XT0(f) is

the normalized finite-size Fourier transform of a T
0

-size real-
ization of the process. Assuming stationary zero-mean uncor-
related symbols, the CSD of (2) is given as

Sl/T
x (f) = �G

✓
f +

l

2T

◆
G⇤

✓
f � l

2T

◆
, (3)

for l 2 Z and 0 for l /2 Z, and G(f) is

G(f) = H(f)P (f) (4)

i.e., the product of the channel frequency response and the
modulation pulse Fourier transform. The factorization (3)
holds even in the presence of a frequency-selective channel,
as it is consequence of the pulse-shaped modulation structure.

2.2. Asymptotic Frequency-Domain Signal Detection

Now, consider the Fourier transform of M blocks of length T
of y(t), namely, YMT (f). In vector notation, the frequency-
domain observation vector is defined as

y(�)
.
= YMT (f(�)), (5)

where f(�) scans the sensing interval (�B/2, B/2) with
small sampling intervals of L .

= dBT e samples through the
auxiliary variable �1/(2T )  �  1/(2T ), i.e.,

f(�) = �1+
1

T

0

B@
(L� 1)/2

...
�(L� 1)/2

1

CA

| {z }
.
=s

. (6)

Under this notation, a consequence of (3) and the stationarity
of the noise is that the second-order statistics of (5) obey

E
⇥
y(� + �)yH(�)

⇤ !
(

S
y

(�)

0

� = 0

� 6= 0
, (7)

where the entries of the L ⇥ L spectral matrix Sy(�) are re-
lated to the CSD of y(t) by

[S
y

(�)]i,j2{1,...,L} = Sfi(�)i�fj(�)
y

✓
fi(�) + fj(�)

2

◆
, (8)

where fi(�) is the i-th element of f(�). By introducing a
vectorial spectral process to treat cyclostationary signals, the
uncorrelation property (7) is hereby unveiled. In fact, this
constitutes and extension of the frequency-domain treatment
of WSS signals to cyclostationary signals, just by extending
the dimension of the frequency-domain process.

It is a well-known result that for a fixed value of f ,
XT0(f) has asymptotic normality as T

0

! 1 [20]. As a
result of, the log-likelihood function of the frequency-domain
observation vector (5) can be written as

L(y) = �
Z

1/T

�
ln det (S

y

(�)) + yH(�)S�1

y

(�)y(�)
�
d�.

(9)
An advantage of this formulation is that the matrix involved in
(9) exhibits low dimensionality L, independent from the data
size. Hence, mathematical and computational simplicity will
be attained compared with the time-domain approach which
typically involves the estimation of cumbersome covariance
matrices, e.g., as in [21]. Using (3), the spectral matrices un-
der both hypotheses read

H
0

: S
y

(�) = N
0

I, (10a)
H

1

: S
y

(�) = N
0

I+ �g(�)gH(�), (10b)

where g(�) = G(f�) � ej2⇡"s, being 0  "  1 the time-
delay or timing parameter.

It is noted that as a result of the frequency-domain formu-
lation of the likelihood function, the general problem posed
in (1) is translated to the specific problem (10). Here, the im-
portant feature of (10) is that the signal component has rank-1
structure, while the noise component is full-rank. This low-
rank nature of the signal to be detected is what provides the
basis of the detection of cyclostationary signals developed in
the sequel.

3. GLR DETECTION OVER
FREQUENCY-SELECTIVE FADING CHANNELS

It is known that in the presence of unknown frequency-
selective channels, the performance of cyclostationary-based
detection methods is severely downed [3]. This is due to
the fact that the channel can attenuate or even kill the spe-
cific cyclostationary feature which is exploited for detection.
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However, as stated in the former section, pulse-shaped mod-
ulated signals preserve the factorization property (3) even
in frequency-selective channels. This means that the rank-1
structure is still present in the received waveform as indicated
in (10), but with a modified pulse shaped according to (4).
Under the asymptotic frequency-domain formulation, this is
modeled as

g(�) =
p
g(�)g̃(�), (11)

i.e., g(�) .
= kg(�)k models the frequency-dependent arbi-

trary gain, g̃(�) is a unit-norm vector. If the coherence band-
width of the channel is known in the form Bc = 1/(KT ), a
K-parameterization of (11) is proposed as

g(�) =
p
gkg̃k, (12)

for � 2 Ik, where

Ik =

✓�1/2 + (k � 1)/K

T
,
�1/2 + k/K

T

◆
, (13)

for k = 1, . . . ,K. Note that the key assumption in the pre-
vious model is that every entry of the frequency vector (12)
remains constant for values of � which are within the coher-
ence bandwidth. Under this model, the singular value decom-
position (SVD) of the spectral coherence matrices under H

1

within the range (13) is

Sy(�) = N
0

I+ gkg̃kg̃
H
k| {z }

.
=Uk⇤kUH

k

(14)

where the eigenvector matrix Uk has been defined as Uk =⇥
g̃k,U?

k

⇤
, and ⇤k is given as

⇤k =


Nk 0
0 N

0

IL�1

�
. (15)

Because this paper addresses generalized likelihood ra-
tio (GLR) detection with unknown white noise PSD and un-
known frequency-selective channel, the set of nuisance pa-
rameters for the log-likelihood function (9) are

N
0

, Nk = N
0

+ �k and g̃k, (16)

for k = 1, . . . ,K.

Theorem 1. The Neyman-Pearson optimal frequency-domain

GLR detector of the second-order cyclostationary signal (2)
over a frequency-selective channel is given by

1
⇣QK

k=1

�k

⌘
1/K ⇣

1�PK
k=1

�k

⌘↵

H1

?
H0

⌘, (17)

where ⌘ is the detection threshold

1
, �k = �

max

{Bk} with

Bk =
1

P̂T

Z

Ik

y(�)yH(�)d�, (18)

1Setting the detection threshold requires the statistical characterization of
the detector under H0. Even though this is in general a hard problem which
has only been addressed in some specific situations, one can resort to the
Wilks’ theorem [22] as a general anlytical tool to set the threshold.

P̂T is an estimate of the total received signal power.

Proof. The derivation of (17) involves the maximum likeli-
hood (ML) estimation of the nuisance parameters, i.e., the
maximization of lnGLR(y) .

= L(y|H
1

)� L(y|H
0

) with re-
spect to (16), which is reported in [23] and omitted here due
to space limitations.

Here, the matrices Bk in (18) are short-band estimates of
the spectral covariance matrix of the received signal normal-
ized by the total received signal power. The entries of these
matrices can be seen as samples of the frequency-smoothed
cyclic periodogram of the signal.

The interpretation of the detector (17) goes as follows.
While the first term of the denominator implements a clas-
sical measure of inter-band sphericity (a term that refers to
flatness), the second term of the denominator is in charge of
measuring the intra-band sphericity, i.e., the lack of spectral
correlation. The second term has no influence for ↵ = 0,
whereas its relative importance increases within the excess
band. As a whole, the value of the detector increases when
high spectral correlation, i.e., high eigenvalue dispersion in
Bk, is assessed, and/or when the the measured spectrum is
far from white.

4. NUMERICAL RESULTS

The performance of the proposed detector (17), referred as
GLRT-K, is evaluated by Monte Carlo simulations using
100,000 realizations per scenario. The transmission is mod-
eled by M QPSK symbols using root raised cosine (RRC)
pulses. A tapped delay line channel model [24] with expo-
nentially decaying power profile is considered with mean
delay-spread of ⌧ / 1/Bc symbols, such that is remains
constant in each realization of MT seconds.

4.1. Benchmark Detectors

For comparison, the following detectors are evaluated in all
the scenarios. First, the well-known MCSCMD-K proposed
by Gardner [10] with `

0

= 1. Second, the GLR detector not
exploiting the frequency-selective nature of the fading chan-
nel, i.e., considering g(�) =

p
gg̃(�) instead of (11). This

yields
1

�(1� �)↵
H1

?
H0

⌘, (19)

with � = P̂s/P̂T [23]. It is noted that this corresponds to the
GLRT-1, i.e., (17) particularized for K = 1. This detector is
considered to illustrate the lack of robustness in presence of
a frequency-selective channel. Third, the LMPIT-K, i.e., the
Frobenius norm of a normalized version of the autocorrelation
matrix

KX

k=1

kBkk2F
H1

?
H0

⌘. (20)
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Fig. 1. Complementary ROC with ⌧ = 1, ↵ = 0.8, SNR =
�0.5dB, M = 256, and K = 8.
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Fig. 2. Missed detection probability versus SNR for a CFAR
of 0.05 with ⌧ = 1, ↵ = 0.8, M = 256, and K = 8.

This detector has been proposed [11, 25] and proved [7] to
be optimal for close hypotheses, i.e., low-SNR. This is the
main reference for comparison, as it assumes identical prior
knowledge.

4.2. Detection Performance

Fig. 1 depicts the complementary receiver operating charac-
teristics (ROC) when the channel has a mean delay-spread of
⌧ = 1 symbol and illustrates the high sensitivity of GLRT-1
in front of an unknown channel response. In contrast, the
performance of the proposed GLRT-K detector exhibits a ro-
bust behavior in detection performance in front of unknown
frequency-selective channels.

The missed detection probability of the detectors versus
the SNR is shown in Fig. 2, where the thresholds have been
set to satisfy a constant false alarm rate (CFAR) of 0.05. It is
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Fig. 3. Missed detection probability versus ⌧ for a CFAR of
0.05 with ↵ = 0.8, SNR = �0.5 dB, M = 256, and K = 8.

rapidly observed that the error exponent associated to this er-
ror probability, i.e., the scaling of the detection performance
with the SNR conditions, is significantly improved by the pro-
posed GLRT-K.

Fig. 3 illustrates the main advantage of the proposed de-
tector by showing the missed detection probability versus the
mean delay-spread ⌧ , with a CFAR of 0.05. It is rapidly ap-
preciated that small values of delay-spread cause a significant
degradation in the detectors’ performance. In contrast, the
GLRT-K tolerates higher delay spreads and shows a degrada-
tion only when the delay-spread is of the same order as the
number of sub-bands, i.e., K. Furthermore, the performance
of the GLRT-K improves for small values of the delay-spread.
This is due to the fact that the GLRT-K is partly sensitive to
the lack of sphericity measured by the geometrical mean term
in the expression (17). Hence, in contrast to other cyclosta-
tionary detectors, the proposed detector does not ignore the
stationary spectral component of the signal, which is less flat
in the presence of a frequency-selective channel.

Finally, compared to the benchmarking LMPIT-K, the
proposed GLRT-K provides a systematic gain in the simu-
lated scenarios, whereas the performance of the LMPIT-K
approaches that of GLRT-K for asymptotically low-SNR, as
expected and confirmed in Fig. 3.

5. CONCLUSIONS

In this paper, the GLR detection of a cyclostationary signal is
addressed by exploiting the rank-1 structure of small spectral
covariance matrices in a novel frequency-domain representa-
tion of digital waveforms. By incorporating a K parameter-
ized frequency-selective channel model based on the coher-
ence bandwidth, the proposed GLRT-K is derived. Numer-
ical results have assessed the detection performance and the
robustness in front of frequency-selective channels.
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