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ABSTRACT

We develop a novel distributional upper bound on the inter-
ference created in an ultra-wideband wireless communication
systems under two general assumptions: the first is that there
is an unknown number of interferers who are distributed ac-
cording to a homogeneous Poisson point process randomly in
space; and the second is that the frequency bands occupied by
the unknown number of interferers is also a random variable
in an ultra-wideband setting. Then given these two general
assumptions, we derive a distributional upper bound repre-
sentation of the total interference.

Index Terms— Interference Models, α-Stable, Geometric
Stable

1. INTRODUCTION

Interference from undesired active users in a wireless network
is a strong limitation on the performance of communication
systems. In such settings, signal reception is corrupted by in-
terference from other users that co-occupy the same spatial
domain and propagation medium. Therefore, there is a need
to characterize the properties of interference resulting from
spatially distributed users. The interference arises at the re-
ceiver due to extraneous signals radiated by other users who
are distributed in the field of transmission of the primary user.
Examples include ad-hoc networks and cognitive radio. The
characterization of the spatial interference in practical wireless
communication systems in which several attributes of the in-
terferers are considered unknown a-priori is an emerging field
of research that combines relevant components of stochastic
geometry and wireless communications, see examples in [1,2].
In such settings it is easily shown that the interference is im-
pulsive in nature, see [3–8]. In addition, it has been shown
that the resulting impulsive interference dominates over the
contribution due to thermal noise.

The development of spatial impulsive interference models
is of practical importance as it provides a framework for prac-
titioners to develop algorithms in order to undertake tasks
such as symbol detection, channel estimation and power allo-
cation. The first step in such a process is a clear mathematical
framework to understand the properties of the interference in-
cident from the spatially distributed unknown number of in-
terferers. This is precisely what we characterize in this paper.

Previous approaches that have studied spatial interference
under impulsive noise have considered the following mod-

els: Laplace, Generalized Gaussian, Cauchy, α-stable, Mid-
dleton class A, see example details in [6, 7, 9]. These existing
approaches that have been developed have dealt purely with
scenarios in which the bandwidth occupied by the interferes
is assumed fixed and known.

In this paper we generalize these frameworks to make the
results widely applicable to address practical settings in which
the bandwidth or the number of carrier frequencies utilized
by the unknown number of interferers that are randomly dis-
tributed in space is itself also an unknown random quantity,
making for the most general class of models one may consider.
This scenario arises for example in settings in which multiple
networks occupying the same frequency bands with the same
transmission characteristics are co-located.

1.1. Multiuser Ultrawideband Communication System Model

We present a generic multi-user wireless system model with-
out power control and develop the total interference model for
a recieved signal observed in the presence of a random num-
ber of unknown spatially distributed interferers. In particular,
we develop the interference model for a wireless communi-
cation network caused by users that share the same propaga-
tion medium. We treat the interfering users as spatially Pois-
son distributed and their transmitted signals are subject to a
power-law propagation loss function. The system model is
defined as follows:

1. Consider an unknown number of spatially distributed
transmitters denoted by N . They are distributed on a
circular domain Ω(AR) :=

{
x ∈ R

2 : ‖x‖ ≤ rT
}

with

area AR, at locations indexed by L =
{
L(i)

}

i=1...N
according to an homogeneous spatial Poisson process
with intensity parameter λ. Therefore, the number of
transmitters in Ω(AR) has distribution

P (N = n) =
(λAR)n

n!
exp (−λAR) .

2. The i-th interferer (i ∈ {1, 2, . . . , N}) transmits an i.i.d
wide band signal, represented in the frequency domain
by:

S(i)(f) =
K∑

k=1

X
(i)
k Gk(f − fk),

where we decompose the signal on elementary bands
whose width is given by a shaping filter Gk(f). Note,
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the shaping filter can be the same function on each
frequency band or a different function with the same
bandwidth for more general settings. The central fre-
quency of the shaping function is denoted by fk , other-
wise commonly known as a subcarrier frequency. We

denote by X
(i)
k the unknown i-th interferers transmit-

ted symbol on subcarrier k. We consider the number
of carrier frequencies to be a discrete positive valued
random variable K. Such a model allows the interfer-
ers to utilize adaptive bandwidths (and consequently
a changing transmission rate) depending on the chan-
nel occupancy that is given by K. Consequently, in
the time domain the representation of the frequency
domain signal of the i-th interferer is given by:

S
(i)(t) =

K∑

k=1

X
(i)
k g

(i)
k (t) exp (2jπfkt) .

3. The bandwidth of each interferer, as quantified by the
number K of carriers, is distributed according to a geo-
metric distribution given by K ∼ Geometric (p), given
by

Pr (Kp = k) = p(1− p)k−1
, k = 1, 2, 3, . . . ,

with p = 1
λ

and E[K] = 1
p

. Practical examples of this in-

clude the following two scenarios: all interferers trans-
mit in the same bandwidth, but this bandwidth is un-
known to the receiver and modeled according to a ge-
ometric distribution; alternatively, all interferers utilize
the same total bandwidth, but the frequencies occupied
by any given user may not overlap, however, the to-
tal bandwidth per user is unknown to the receiver and
modeled according to a geometric distribution.

4. The distance of the i-th interferer from the receiver is a
random variable denoted by R(i) and given by:

R
(i) =

∥∥∥L(i) − l
R
∥∥∥ ,

where L(i) is a random location of the i-th potential in-

terferer and lR is a known location of the receiver in
region R. Given N = n total interferers, the location of
the i-th interferer is uniformly distributed in space over
the circular interference domain with a distribution given
by:

fR(i)|N (r|N = n) =





2r

r2T
, if 0 ≤ r ≤ rT

0, otherwise,

where rT is the maximal distance in which an interferer
can have a non-negligible contribution to the interfer-
ence.

5. For the i-th interferer, the baseband representation of

the channel experienced by the symbol X
(i)
k is given by

A
(i)
k

e
jΦ

(i)
k

R
−σ/2
i

. The random variable for the phase, denoted

by Φk , is uniformly distributed in [0, 2π]. The path

loss experienced by the i-th interferer is given by R
−σ

2
i ,

where σ is the attenuation coefficient, a deterministic

and known parameter reflecting the physical environ-

ment in which transmission is occurring. A
(i)
k ejΦ

(i)
k

is a complex coefficient that contains the shadowing
and multipath fading. This representation is general
enough to encompass all commonly encountered fad-
ing models.

6. The total interference experienced by the received sig-

nal, after applying the target users shaping filter
(
g(0)
)

at the receiver side is given by:

Y =

N∑

i=1

1

R
−σ/2
i

K∑

k=1

A
(i)
k X

(i)
k c

(i)
k e

jΦ
(i)
k

=
K∑

k=1

N∑

i=1

Y
(k,i)
I + j

K∑

k=1

N∑

i=1

Y
(k,i)
Q

(1)

where c
(i)
k is a random variable resulting from the filter-

ing on subcarrier k and depends on the system param-
eters:

c
(i)
k =

∫

ℜ

g
(i)
k (u+∆i) exp (2jπ(fk − f0)u) g

(0)(Ts−u)du

where g(0)(t − u) is the shaping filter of the reference
user. It has a wider frequency response than the in-
terferers and is time limited. Its position depends on
the sampling time Ts. We only consider interferers for

which g
(i)
k (u) and g(0)(Ts − u) are both non zero on a

common, non null, interval.

2. SPATIAL INTERFERENCE AT A SINGLE FREQUENCY

Existing results of [4–6, 10] study the spatial interference
model and show that at a given frequency of transmission,
the interference at the receiver experienced by an unknown
number of randomly distributed interferers is given by an
isotropic α-stable characteristic function (CF) in C

2. To ob-
tain this result one specifies the CF of the k-th transmission
frequency of the i-th user.

Definition 1 The CF of the interference at the k-th transmis-
sion frequency, from i-th potential interferer, is given by:

ϕ
Y

(k,i)
I

,Y
(k,i)
Q

(
ω

(k,i)
I , ω

(k,i)
Q

)

= E
Y

(k,i)
I

,Y
(k,i)
Q

[
exp

(
jω

(k,i)
I Y

(k,i)
I + jω

(k,i)
Q Y

(k,i)
Q

)]
.

This expression can then be extended to the CF for the total
interference for the k-th transmission frequency, given an un-
known number of independent potential interferesN as given
next for the k-th transmission frequency, for a random number
of N ∈ AR potential interferers:

ϕ
Y

(k)
I

,Y
(k)
Q

(
ω

(k)
I , ω

(k)
Q

)
= ER,ck,Ak,Φk,N

[
exp

(
F
(
ω

(k)
I , ω

(k)
Q

))]
.

with

F
(
ω

(k)
I , ω

(k)
Q

)
=

(
j
√
A

N∑

i=1

R
−σ/2
i A

(i)
k c

(i)
k cos

(
Φ

(i)
k − η

))

A =
(
ω

(k)
I

)2
+
(
ω

(k)
Q

)2
, η = arctan

(
ω

(k)
Q

ω
(k)
I

)
.

5806



Given this representation for the CF we can derive the CF
of the total interference at the k-th frequency. The resulting
log CF, for the total interference at the k-th frequency, for a
random number of potential interferers N in a region AR can
be expressed in the form of a CF representing the family of
isotropic bivariate α-stable distributions S(α, 0, γ, δ; 0),

ψ
Y

(k)
I

,Y
(k)
Q

(
ω

(k)
I , ω

(k)
Q

)
= −γ

∣∣∣∣∣

√(
ω

(k)
I

)2
+
(
ω

(k)
Q

)2
∣∣∣∣∣

α

,

with α = 4
σ
< 2 and γ = λπEAk,ck

[
(Akck)

4
σ

] ∫∞

0

J1(x)

x
4
σ

dx

where J1 (x) denotes the Bessel function of the first order. This
result is in the form of a bivariate log characteristic function of

the complex random variable Y (k) =
∑N

i=1(Y
(k,i)
I + jY

(k,i)
Q )

in (1). The resulting characteristic function is a member of the
elliptic family of stable distributions for all 0 < α < 2 and
γ > 0.

3. TOTAL INTERFERENCE IN ULTRA-WIDEBAND
SYSTEMS

In this section we extend existing results for the representa-
tion of the characteristic function for interference at a single
fixed frequency to the setting of total interference for a ran-
dom number of carrier frequencies, given by the compound
Geometric Stable distribution of the compound random sum:

Ỹ
K =

∑K
k=1 Y

(k). Therefore the density of the total inter-
ference across all frequencies in a wideband setting is given
by studying the geometrically weighted random mixture of
the k-fold convolved bivariate stable distributions for the to-
tal interference on each carrier frequency discussed above.
Note, in the univariate case, since the stable distribution is
closed under convolution, then for i.i.d. random variables
Xi ∼ Sα(βi, γi, δi; 0) the distribution of linear combina-
tion given k frequencies, is given by the random variable∑k

i=1Xi ∼ S(α, β̃, γ̃, δ̃; 0) with parameters

γ̃
α =

k∑

i=1

γ
α
i , β̃ =

∑k
i=1 βiγ

α
i∑k

i=1 γ
α
i

,

δ̃ =






∑k
i=1 δi + tan πα

2

(
β̃γ̃ −∑k

i=1 βjγj

)
, α 6= 1,

∑k
i=1 δi +

2
π

(
β̃γ̃ log γ̃ −∑k

i=1 βjγj log γi
)
, α = 1.

However, we are considering in our context bi-variate sta-
ble models, therefore we utilize the following representation
which uniquely and exactly characterizes the bivariate results
whilst allowing us to utilize the univariate representation
above. Consider a multivariate isotropic α-stable random
vector Y of dimension d with scale γ and location δ. Its den-
sity can be represented under projection as follows [11]. For

every vector u ∈ R
d, the one-dimensional projection 〈u,Y〉 is

a univariate α-stable symmetric RV with stability index α. As
detailed in [11,12], the projection onto vector u in the isotropic
case is given by the stable univariate random vector:

〈u,Y〉 ∼ Sα (0, γ (u) , δ (u) ; 0) .

By Cramer-Wold these univariate projections characterize the
joint distribution, where γ (·) and δ (·) are called projection pa-
rameter functions [13, 14] and [11, Section 2.1]. In the special
case of the isotropic multi-variate α-stable model we obtain

∀u ∈ R
d the simplification γ (u) = γ.

3.1. Asymptotic Distributional Upperbound on Total Inter-
ference in Ultra-Wideband Systems

We now present a novel result which shows that in ultra-
wideband settings we can significantly simplify the represen-
tation of the total interference of these models by utilizing a
special distributional convergence result.

We consider the setting in which the total system band-
width is designed under an ultra-wideband framework in
which we are interested in the total interference across all
frequencies. In such a setting we can derive a unique repre-
sentation of the upper bound for the characterization of the
total interference according to the domain of attration of a
Geometric-Stable distribution. We derive this result via the
representation of a spatial complex isotropic stable compound
process as the asymptotic limit of a Linnik law (symmetric
Geometric-Stable [15]) given in Theorem 1 below.

First we note the following properties of the α-Stable
model and how they relate to the relevant properties we shall
utilize from the Geometric Stable model. In the case of the
α-stable severity model, one has the property that if random
vectors X1,X2, . . . ,Xn are i.i.d. α-stable distributed random
vectors, then for some constant functions an and bn one has
that

Sn
d
= an (X1 +X2 + · · ·+Xn) + bn,

is also α-stable distributed. In the case of a Geometric stable
distribution one has, that as the number of elements in the
sum Kp (the number of carrier frequencies occupied by the
interferers in the ultra-wideband system) is geometrically dis-
tributed with parameter p and i.i.d. interferences with any
distribution Xi ∼ FX such that one has that the compound
total (interference) given by

YKp

d
= aKp

(
X1 +X2 + · · ·+XKp

)
+ bKp

with a(p) > 0 and b(p) ∈ R
d converge weakly (as p → 0) to

a limit, then the limit will be the Geometric stable distribution
[16].

Theorem 1 (Ultrawideband Total Interference Upper Bound)
The distributional upper bound for the total interference of the ultra-
wideband system is given uniquely by the univariate Geometric-
Stable model:

Z(u) ∼ GS (αGS(u), βGS(u), γGS(u), δGS(u)) ,

with tail index αGS ∈ [0, 2], skewness parameter βGS ∈ [−1, 1],
scale parameter γGS > 0 and location parameter δGS ∈ R.

The resulting distributional upper bound for the total interef-
erence given by the Geometric-Stable model characteristic function
given by:

log ΦZ(u)(ω) = logE [exp(iωZ(u))]

=





[1 + γGS(u)|ω| (1 + iβGS(u)(2π)sgn(ω) log |ω|)
−iδGS(u)ω] , αGS = 1[
1 + γGS(u)

αGS |ω|αGS
(
1− iβGS (u) sgn (ω) tan

(
παGS

2

))

−iδGS(u)ω] , αGS 6= 1.

Proof: For the Ultrawideband case, we consider the
asymptotic limit as p → 0 and therefore Kp → ∞. In this
case, the compound process for the resulting total interference
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model converges in distribution to the bivariate Geometric-
Stable distribution characterized by a spectral measure ΓGS

and a location vector m according to

lim
p→0

Kp∑

k=1

Y
(k) = lim

p→0

Kp∑

k=1

[
Y

(k)
I , Y

(k)
Q

]T d→ Z ∼ GS (ΓGS ,m) ,

where we used a general result for Geometric random sums
of i.i.d. univariate random variables [16] and for the multi-
variate setting [17]. The case of the symmetric distribution
family for the summand random variables is considered the
Linnik distribution [18]. Next we modify by first projecting
the complex isotropic stable distribution to a univariate sta-
ble distribution, which we then approximate the compound
process random number of summands by a Geometric distri-
bution with an upper bound achieved by taking the limit as
p→ 0. Under projection of the total interference onto a vector
u ∈ R

2 which produces a univariate random variable given
by

Z(u) := lim
p→0

〈Kp∑

k=1

Y
(k)
,u

〉
.

In addition, in Theorem 2 below we relate this Geometric-
Stable characteristic function to that of the α-Stable character-
istic function.

Theorem 2 This limiting distributional upper bound for the total
interference is represented according to the α-stable characteristic
function (ΦX) under Zolotarev’s B-Type parametrization according
to the relationship

log ΦZNp
(θ;αGS , βGS , γGS, δGS)

= [1− log ΦX (θ;αB , βB , γB , δB)]−1

with the following relationships

αGS = αB , βGS =

{
cot
(
π
2
αB

)
tan

(
π
2
βBK(αB)

)
, α 6= 1

βB , α = 1

δGS = δBγB, γGS =

{
cos
(
π
2
βBK(αB)

)
γB, α 6= 1

π
2
γB, α = 1

These results hold where the actual carrier frequencies occu-
pied by each interferer in the wideband system are different
and where different numbers of carriers may be considered
for each interferers occupancy.

In Fig. 1 we illustrate the result obtained in Theorem 1.
We present the asymptotic convergence of the the PDF and
CDF of the total interference for various values of the mean
occupancy, p = {0.2, 0.1, 0.075, 0.01}.

4. CONCLUSIONS

We developed a distributional upper bound on the interfer-
ence created in an ultra-wideband wireless communication
systems. We considered the practical scenario in which there
is an unknown number of interferers who are distributed ac-
cording to a homogeneous Poisson point process randomly in
space, and that the frequency bands occupied by the unknown
number of interferers is also a random variable in an ultra-
wideband setting. Given these two general assumptions, we
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Fig. 1: Distribution of the total interference in an Ultrawide-
band communication system. The parameter p controls the
mean number of subbcarriers occupied.

derived a distributional upper bound representation of the to-
tal interference via characterization of the resulting total inter-
ference of all interferers as a Geometric Stable distribution.
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