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ABSTRACT

Clock synchronization and ranging are important topics in the field
of wireless networks, where internode time measurement allows
both tasks to be completed in one. Such networks are generally
time-variant due to possible changes in environmental conditions
and mobility of network nodes. We present a fully distributed fil-
tering algorithm for combined clock synchronization and ranging
based on message passing by belief propagation on a factor graph
representation of a time-variant wireless network. The resulting
message passing equations can be interpreted as a variant of Kalman
filtering locally on each network node. Simulation results show
that tracking estimation parameters improves estimation accuracy
significantly without additional communication effort.

Index Terms— Clock synchronization, ranging, belief propaga-
tion, factor graphs, Kalman filtering

1. INTRODUCTION

In wireless networks (WNs), a shared notion of time is a fundamen-
tal requirement in a variety of tasks [1–3]. In addition, emerging
application areas require internode distance estimation [4–6], also
referred to as ranging. Clock synchronization can be seen as the
key to achieving a shared notion of time. Considering that neighbor-
ing nodes of a WN share timing information by a two-way packet
exchange mechanism [7], a relationship exists between the line-of-
sight propagation delay of packets and internode distances.

There is a recent trend towards clock synchronization by means
of probabilistic graphical models, i. e., factor graphs (FGs) [8]. This
method offers fully distributed algorithms that lead to better scalabil-
ity, since the same algorithm is executed on each node. Introduced
by [9], belief propagation (BP) is used for distributed clock offset
synchronization in a WN.

Individual nodes usually acquire their knowledge of time from
local clocks, for instance, oscillators. However, these are affected by
hardware imperfections [10, 11] that cause time drifts between lo-
cal clocks. In order to avoid frequent resynchronization procedures
for drift compensation, an extension of the FG approach in [9] that
offers combined estimation of both clock skew and offset was pro-
posed in [12,13]. On the basis of [13], a distributed synchronization
and ranging algorithm has recently been introduced in [14], where a
time-invariant WN has been assumed.

In general, clock parameters and internode distances are time-
variant due to possible changes in environmental conditions and
mobility of nodes. If the parameters of a WN change over time, the
above-mentioned methods require re-estimation in each synchro-
nization period using a new set of measurements, which ignores

dependencies between the synchronization periods. Therefore,
tracking the time-variant parameters improves estimation accuracy.
Solutions using FGs for time-variant clock offset estimation be-
tween two nodes have recently been introduced in [15, 16]. Another
approach based on the Expectation-Maximation algorithm that per-
forms clock synchronization and localization for time-varying clock
parameters was presented in [17]. The method is limited to a single
pair of nodes, and network-wide distance estimation via localization
is computationally demanding. To the best of our knowledge, no
fully distributed algorithm for combined network-wide time-variant
clock synchronization and ranging is available.

The work presented here focuses on the extension of combined
clock synchronization and ranging to WNs, which are time-variant
in both clock parameters and distances. Our algorithm combines
clock skew and offset estimation with ranging by using a distributed
filtering approach. It enables distributed tracking of time-varying pa-
rameters on each node of a WN. Its derivation is based on BP mes-
sage passing on an FG representing a time-variant WN. Simulation
results show that considering dependencies between synchronization
periods leads to an improvement in estimation accuracy.

2. SYSTEM MODEL

Similar to [14], a WN of N nodes is considered, where a node i ∈
I,{1, . . . , N} belongs either to a subsetM of synchronous master
nodes or a subsetA of asynchronous agent nodes, meaning that I =
M∪A. Each node i possesses a local clock time

ci(t) = αi(t) t+ βi, (1)

where αi(t) denotes the time-variant local clock skew and βi the
time-invariant local clock phase. If i ∈ M, it is assumed that
αi(t) = 1 and βi = 0. The time-variant distance between node
i ∈ I and a node j ∈ I is given as dij(t) = dji(t). If dij(t) < R,
the node pair (i, j) can communicate with each other, and R de-
notes the corresponding communication range. The tupel (i, j) is
then added to the connection set C, and the set of all neighbors of a
node i ∈ I is given as Ti , {j ∈ I | (i, j) ∈ C}.

As in [13], nodes exchange information by means of packets
during a measurement period Tl and a subsequent message pass-
ing period Tm. Both periods are repeated with the synchronization
period Tn, and therefore Tn ≥ Tl + Tm. We approximate the time-
variant parameters αi(t) and dij(t) as piecewise constant functions
with interval Tn. This leads to an approximation

αi(t) ≈
∞∑
n=0

αi,n rect
(
t− (n+ 1

2
)Tn

Tn

)
(2)
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with αi,n , αi(nTn) and an analogous approximation dij(t) with
dij,n , dij(nTn). In order to compensate for clock errors intro-
duced by (2), βi must also be modeled as a piecewise constant
function [17], which yields βi,n. To capture time-variations, a
Gauss-Markov evolution model is used for αi,n, βi,n, and dij,n. We
can thus write, for example, for αi,n (and analogously for βi,n and
dij,n):

αi,n = αi,n−1 + un, (3)

where un
iid∼ Nu(0, σ2

u). For mathematical simplicity, we assume
σ2
u to be equal for all three parameters.

In order to perform clock synchronization and ranging, the pair-
wise exchange of time stamps is applied across the network [7]. If
(i, j) ∈ C, node i transmits Kij ≥ 1 packets to node j and re-
ceives Kji ≥ 1 packets from node j. The k-th packet from node i is
transmitted at send time s(k)

ij,n and received by node j at receive time
r(k)

ij,n = t(k)

ij,n + δ(k)

ij,n. The line-of-sight propagation delay is

δ(k)

ij,n = dij,n/v0 + w(k)

ij,n (4)

with the propagation velocity v0 and w(k)

ij,n

iid∼ Nw(0, σ2
w) being

Gaussian measurement noise. The send and receive times are
recorded in local time as time stamps: ci,n(s(k)

ij,n) and cj,n(r(k)

ij,n).
By considering (1), the relation between transmitted and received
time stamps can be written as

cj,n(r(k)

ij,n)=
ci,n(s(k)

ij,n)−βi,n
αi,n

αj,n +βj,n +
dij,n
v0

αj,n +w(k)

ij,nαj,n,

(5)
for k ∈ {1, . . . ,Kij}. A similar relation holds for the packets sent
by node j to node i by exchanging i and j in (5). It is assumed that
the time stamps ci,n(s(k)

ij,n) and ci,n(r(k)

ji,n) are recorded precisely.
The aggregated observation between nodes i and j in the n-th syn-
chronization period is given by [17] as

cij,n = [cT
i→j,n,−c̃T

j→i,n]T, (6)

with the vector of received time stamps

ci→j,n ,
[
cj,n(r(1)

ij,n), cj,n(r(2)

ij,n), . . . , cj,n(r(Kij)

ij,n)
]T

and the vector of transmitted time stamps

c̃j→i,n ,
[
cj,n(s(1)

ji,n), cj,n(s(2)

ji,n), . . . , cj,n(s(Kji)

ji,n)
]T

.

Finally, all observations cij,n of all nodes I are stacked into cn, and
all distances dij,n into dn. The clock parameters θi,n=[αi,n, βi,n]T

are hereafter treated in the form of transformed clock parame-
ters ϑi,n = [λi,n, χi,n]T , [1/αi,n, βi,n/αi,n]T. Additionally, the
following notation will be convenient: rij,n = [rTi,n, r

T
j,n]T and

rn = [rT1,n, . . . , r
T
N,n]T for r ∈ {θ,ϑ}.

3. STATISTICAL MODEL

In each measurement period Tl, the observations cij,n for a pair of
nodes (i, j) ∈ C form a local likelihood function that can be derived
from (5) by using an approximation as in [13]:

p(cij,n|ϑij,n, dij,n)

∝ exp

(
−‖Aij,nϑi,n + Bij,nϑj,n + addij,n‖2

2σ2
w

) (7)

with

Aij,n,

[
−c̃i→j,n 1Kij

cj→i,n −1Kji

]
, Bij,n,

[
ci→j,n −1Kij

−c̃j→i,n 1Kji

]
,

and ad , − 1
v0

1Kij+Kji , where 1S denotes a column vector of size
S filled with ones. Note that (7) is a member of the exponential fam-
ily [18]. Further, if node i ∈ I has perfect knowledge of the trans-
formed clock parameters ϑj,n of node j and the distance dij,n with
j ∈ Ti, then (7) can be written as a Gaussian emission distribution

p(cij,n|ϑij,n, dij,n) = Nyi,n

(
−Aij,nϑi,n, σ

2
wIKij+Kji

)
, (8)

where yi,n , Bij,nϑj,n + addij,n can be interpreted as modified
observations, and IS denotes an identity matrix of size S. By assum-
ing conditionally independent obervations, the network-wide likeli-
hood function is given as

p(cn|ϑn,dn) =
∏

(i,j)∈C

p(cij,n|ϑij,n, dij,n). (9)

In addition to the likelihood function obtained through measure-
ments, each node i ∈ I has prior knowledge of its local trans-
formed clock parameters ϑi,n and its distances dij with j ∈ Ti.
For master nodes i ∈ M, perfect prior knowledge is available, i. e.,
p(ϑi,0) = δ(ϑi,0 − ϑ̄i,0), where ϑ̄i,0 denotes the true transformed
clock parameter of i and δ(·) the Dirac delta function. For agent
nodes i ∈ A, the prior function is p(ϑi,0) = Nϑ(µp,i,Σp,i) with
µp,i = [1 0]T and Σp,i = diag{σ2

λi
, σ2
χi
}. The uncertainty over the

local clock skew is captured by σ2
λi

, which is typically given by the
clock specifications. In order to model the absence of prior knowl-
edge of the local clock phase, a large value is usually chosen for σ2

χi
.

A prior function on the distance p(dij,0) can further be assumed and
depends on the topology of the WN. For efficient algorithm design, a
Gaussian representation p(dij,0) = Nd(µp,ij ,Σp,ij) is chosen. As-
suming that all local prior functions are statistically independent, the
network-wide prior function is given as

p(ϑ0,d0) =
∏

(i,j)∈C

p(dij,0)
∏
i∈I

p(ϑi,0). (10)

Additionally, a network-wide transition function for ϑn is derived
from the Gauss-Markov evolution models of αi,n and βi,n as

p(ϑn|ϑn−1) =
∏
i∈M

δ(ϑi,n−ϑi,n−1)
∏
i∈A

Nϑi,n(ϑi,n−1, σ
2
uI2)

(11)
and similarly for dn. The likelihood function (9), the prior function
(10), and the transition functions are subsequently used to formu-
late a distributed filtering algorithm for clock synchronization and
ranging in time-variant WNs.

4. DISTRIBUTED FILTERING

The goal is to obtain in every synchronization period Tn a minimum
mean square error (MMSE) estimate for the unknown parameters
ϑi,n and dij,n with j ∈ Ti of each node i ∈ A. The system model
of section 2 can be written as a nonlinear filtering problem in the
form of a discrete-time state-space model given as

xn = G xn−1 + vn (12a)
yn = h(xn,wn), (12b)

where xn , [ϑT
n ,d

T
n ]T, yn , cn, vn, and wn are the n-th state,

observation, process noise, and observation noise variables, respec-
tively, with respect to the unknown state xn. The initial state x0 is
determined by the given prior function (10). Furthermore, vn and
wn are assumed to be independent white Gaussian noise sequences
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x1

p(y1|x1)

p(xn|xn−1) xn

p(yn|xn)

p(x1|x0)

mn|n(xn)mn|n−1(xn)

γ(xn)

p(x0)

Fig. 1. Factor graph of the global posterior function (13); factor
vertices fi are shown as rectangles and variable vertices vi are shown
as circles.

with vn ∼ Nv(0,Γ) and wn ∼ Nw(0, σ2
wI|C|), where Γ is derived

from (11). In (12), the matrix G = I2|I|+|C| is called transition
matrix, and h(·) is the vector form of the nonlinear measurement
equation (5). Based on (9) and (11), the state-space model of (12)
can be written in terms of transition and emission distributions as

p(xn|xn−1) = Nxn(G xn−1,Γ)

p(yn|xn)

∝ exp
(
− 1

2σ2
w

∑
(i,j)∈C

∥∥Aij,nϑi,n+Bij,nϑj,n+addij,n
∥∥2).

The global posterior function for all states x1, . . . ,xn up to n given
all observations y1, . . . ,yn up to n can thus be written as

p(x1,. . . ,xn|y1,. . . ,yn) ∝ p(x0)

n∏
m=1

p(xm|xm−1)p(ym|xm),

(13)
where the values yn observed for each n are regarded as parame-
ters. The conditional density function for xn given all observations
y1, . . . ,yn up to n is the marginal function of (13) given by [19] as

mn|n(xn) = p(xn|y1, . . . ,yn)

=

∫
p(x1, . . . ,xn|y1, . . . ,yn) d∼{xn},

(14)

where ∼{xn} denotes the integration over all variables except xn.
The mean of mn|n(xn) ∝ Nxn(µn,Σn) is the MMSE estimate of
xn given all observations y1, . . . ,yn up to n.

We use BP to obtain an efficient computation of (14), which
means that we apply message passing over the edges of an FG [19–
21]. In general, an FG is a graphical representation of the fac-
torization of a function; for example, the factorization of (13) is
illustrated in Fig. 1. Inserting (9) and (11) into (13) allows each ver-
tex p(yn|xn) to be represented by a subgraph as given in [14],
and each vertex p(xn|xn−1) by node-independent transitions.
For each state xn, we can thus compute the marginal function
mn|n(xk,n) ∝ Nxk,n(µk,n,Σk,n) locally for each state entry
xk,n , [xn]k, which corresponds to the MMSE estimate of ei-
ther clock parameters ϑi,n or a distance dij,n. The resulting FG for
BP can be represented graphically by stacking the FG for the poste-
rior function of [14] in discrete-time n and additionally introducing
transition functions p(xk,n|xk,n−1) for each vertex xk,n. Similar to
the discussion in [14], disjoint subgraphs of this FG can be related
to physical network nodes, which leads to a distributed algorithm.

The message computation rules of BP for a message from a fac-
tor vertex fi to a variable vertex vi and vice versa are given by [19] as

mfi→vi(vi) ∝
∫
ζ(v)

∏
vj∈V(fi)\{vi}

mvj→fi(vj) d∼{vi}, (15)

mvi→fi(vi) ∝
∏

fj∈V(vi)\{fi}

mfj→vi(vi), (16)

where the function ζ(v) corresponds to the factor vertex fi and v
is the vector of all variable vertices (including vi). The set V(fi)
holds all adjacent vertices of fi. Finally, a marginal with respect to a
variable vi, for instance, the marginal function (14), is given by the
belief, which is the product over all incoming messages [19]

b(vi) ∝
∏

fj∈V(vi)

mfj→vi(vi). (17)

Applying (15) and (16) to the previously discussed FG, we com-
pute in a so-called measurement step the local outgoing message

mn|n(xk,n)=mn|n−1(xk,n)γ(xk,n) (18)

and in a so-called prediction step the local outgoing message

mn|n−1(xk,n)=

∫
p(xk,n|xk,n−1)mn|n(xk,n−1) dxk,n−1

∝Nxk,n(Gµk,n−1,GΣk,n−1G
T + Γ︸ ︷︷ ︸

Pk,n−1

).
(19)

Due to cyclic dependencies between all xk,n, the message γ(xk,n)=∏
fi∈V(xk,n) m

(M)

fi→xk,n
(xk,n) is computed iteratively by using M

iterations of loopy belief propagation (LBP) in each subgraph repre-
senting p(yn|xn). As presented in [13], each xk,n therefore needs
to compute intrinsic and extrinsic messages, which are exchanged
with adjacent vertices V(xk,n). Since all messages are Gaussian,
the parameters ofm(m)

fi→xk,n
(xk,n) ∝ Nxk,n(µ̂(m)

k,n, Σ̂
(m)

k,n) are com-
puted iteratively in each message-passing period Tm. This leads to
the parameter computation rules for µ̂(m)

k,n and Σ̂(m)

k,n given by [13] as

(
Σ̂(m)

k,n

)−1
=

1

σ2
w

(
VTV −QWTV

)
(20a)(

Σ̂(m)

k,n

)−1
µ̂(m)

k,n = −Q
(
Σ̂(m− 1)

ext

)−1
µ̂(m− 1)

ext (20b)

with
Q , VTW

(
WTW + σ2

w

(
Σ̂(m− 1)

ext

)−1
)−1

, (21)

where the choice of the matrices V, W depends on the adjacent
vertices, and µ̂(m)

ext , Σ̂(m)

ext are parameters of the extrinsic messages,
which capture the uncertainty over the parameters from adjacent
vertices. Note that the computation of all messages mn|n(xk,n),
mn|n−1(xk,n), and m(m)

fi→xk,n
(xk,n) can be done fully distributed.

Equation (18) can be written explicitly in terms of the parame-
ters µk,n and Σk,n for the message mn|n(xk,n) of an agent node
i ∈ A as

Σ−1
k,nµk,n = Σ−1

k,n−1Gµk,n−1

−
∑
V(xk,n)

VT︸︷︷︸
−HT

( 1

σ2
w

− 1

σ2
w

WΣ(M)

ext WT(σ2
w+WΣ(M)

ext WT)−1︸ ︷︷ ︸
∆−1

)
Wµ(M)

ext︸ ︷︷ ︸
yi,n

(22a)

Σ−1
k,n = P−1

k,n−1 +
∑
V(xk,n)

VT︸︷︷︸
−HT

(
σ2
w+WΣ(M)

ext WT)−1︸ ︷︷ ︸
∆−1

V︸︷︷︸
−H

.

(22b)

If the agent node i ∈ A has perfect knowledge Σ(M)

ext → 0 of the
parameters of node j ∈ Ti, the terms ∆ tend to ∆→ σ2

w in (22),
and (22) is thus equal to the information form of the update equa-
tions for Kalman filtering [22, 23] locally on node i. In this case,
the local likelihood function of node i can be represented by (8)
with H = −Aij,n and yi,n = Bij,nϑj,n + addij,n. Hence, the
presented distributed filtering algorithm can be interpreted as an iter-
ative approximation to the Kalman filter [19] with a modified mea-
surement noise covariance matrix ∆ as denoted in (22).
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Fig. 2. Simulation results for a random small-world wireless network with |M| = 1 master node and |A| = 9 agent nodes.

5. SIMULATION RESULTS

Our distributed filtering algorithm was simulated on a connected net-
work containing |M| = 1 master node and |A| = 9 agent nodes.
Following [24], the network topology was chosen to form a small-
world graph, since WNs as a form of spatial graphs tend to be more
clustered than random graphs. In every n-th synchronization pe-
riod Tn of state xn, all pairs of nodes (i, j) ∈ C exchange K = 10
measurements and performM = 10 message passing iterations, fol-
lowed by a state transition to the next state xn+1. The clock skews
αi,n were drawn from a uniform distribution with mean 1 and inter-
val length 2× 10−4(= ±100 ppm), and the phase offsets βi,n were
drawn from a uniform distribution on the interval [−1ms, 1ms]. The
distances dij,n were drawn from a uniform distribution on the in-
terval [1 m, R], where the communication range was chosen to be
R = 500 m. Finally, the measurement noise standard deviation was
σw = 93 ns, and the process noise standard deviation was 0.1 ppm,
0.1µs, and

√
0.1 m, respectively. The simulation results for 1000

Monte Carlo iterations are illustrated in Fig. 2.
In order to provide a lower bound on the estimation error of

our distributed filtering algorithm, the Bayesian Cramér-Rao bound
(BCRB) for discrete-time nonlinear filtering was used [25]. In ac-
cordance with [26], it can be computed by using message passing
on an FG with a structure identical to that shown in Fig. 1. Since

the BCRB is computed for Gaussian priors to fulfill the “weak un-
biasedness” condition [26], it will always be a lower bound for the
estimation error of our distributed filtering algorithm.

6. CONCLUSION

We have presented a distributed filtering algorithm for tracking time-
variant clock parameters and internode distances. It can be applied
to time-variant WNs, in order to perform cooperative simultaneous
ranging and synchronization (CoSRAS). The algorithmic derivation
is based on message passing, namely BP, on an FG representing
a WN. This leads to efficient local message computation rules for
the MMSE estimate of local clock skews and phases of network
nodes, as well as of internode distances between neighboring net-
work nodes. Furthermore, we have shown that our fully distributed
and decentralized filtering algorithm can be interpreted as a variant
of Kalman filtering locally on each node, meaning that it obtains
a similar complexity. Simulations, performed on a WN with time-
varying clock parameters and distances, provided a frame of refer-
ence for the accuracy of the proposed algorithm. In order to provide
a lower bound on the estimation error, we computed the correspond-
ing BCRB for nonlinear filtering, which was in the same order of
magnitude as the accuracy of our algorithm.
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